精英家教网 > 高中数学 > 题目详情

【题目】设斜率为2的直线l,过双曲线的右焦 点,且与双曲线的左、右两支分别相交,则双曲线离心率,e的取值范围是

A. e B. e C. 1e D. 1e

【答案】A

【解析】设右焦点为所以直线方程为,代入双曲线得: 因为直线与双曲线左右分别相交所以交点的横坐标的乘积由韦达定理可得: 可得故选A.

【方法点晴】本题主要考查利用双曲线的简单性质求双曲线的离心率取值范围,属于中档题. 求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率范围问题应先将 用有关的一些量表示出来,再利用其中的一些关系构造出关于的不等式,从而求出的范围. 本题是利用韦达定理构造出关于的不等式,最后解出的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂生产的产品的直径均位于区间内(单位: ).若生产一件产品的直径位于区间内该厂可获利分别为10302010(单位:元),现从该厂生产的产品中随机抽取200件测量它们的直径,得到如图所示的频率分布直方图.

1的值,并估计该厂生产一件产品的平均利润;

2现用分层抽样法从直径位于区间内的产品中随机抽取一个容量为5的样本,从样本中随机抽取两件产品进行检测,求两件产品中至多有一件产品的直径位于区间内的槪率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】m, n是两条不同的直线,是三个不同的平面, 给出下列四个命题:

m⊥α,n∥α,m⊥n;α∥β, β∥r, m⊥α,m⊥r;

m∥α,n∥α,m∥n;α⊥r, β⊥r,α∥β

其中正确命题的序号是 ( )

A. B. ②③ C. ③④ D. ①

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cosx(x∈(0,2π))有两个不同的零点x1、x2 , 方程f(x)=m有两个不同的实根x3、x4 . 若把这四个数按从小到大排列构成等差数列,则实数m的值为(
A.
B.
C.
D.-

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(1,﹣1),B(4,0),C(2,2),平面区域D是所有满足 = (1<λ≤a,1<μ≤b)的点P(x,y)组成的区域.若区域D的面积为8,则4a+b的最小值为 (
A.5
B.4
C.9
D.5+4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥P-ABC中,PC平面ABCPC=AC=2AB=BCDPB上一点,且CD平面PAB

(1)求证:AB平面PCB

(2)求异面直线APBC所成角的大小

(3)求二面角C-PA-B 的大小的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}中,已知a1=2,a4=16.
(1)求数列{an}的通项公式an
(2)若a3 , a5分别是等差数列{bn}的第4项和第16项,求数列{bn}的通项公式及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当今,手机已经成为人们不可或缺的交流工具,人们常常把喜欢玩手机的人冠上了名号“低头族”,手机已经严重影响了人们的生活.—媒体为调查市民对低头族的认识,从某社区的500名市民中随机抽取名市民,按年龄情况进行统计的频率分布表和频率分布直方图如图:

(1)求出表中的值,并补全频率分布直方图;

(2)媒体记者为了做好调查工作,决定在第2,4,5组中用分层抽样的方法抽取6名市民进行问卷调查, 再从这6名市民中随机抽取2名接受电视采访,求第2组至少有一名接受电视采访的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】活水围网养鱼技术具有养殖密度高、经济效益好的特点.研究表明:活水围网养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当不超过/立方米时, 的值为千克/年;当时, 的一次函数,且当时,

)当时,求关于的函数的表达式.

)当养殖密度为多大时,每立方米的鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.

查看答案和解析>>

同步练习册答案