精英家教网 > 高中数学 > 题目详情

【题目】如图,D、E分别是△ABC的边BC的三等分点,设 =m, =n,∠BAC=

(1)用 分别表示
(2)若 =15,| |=3 ,求△ABC的面积.

【答案】
(1)解: = ,∴ = = =

同理可得: =


(2)解: =c, =b.

=15,| |=3

= + + = + b2+ bccos = + b2+ bc=15,

= ,化为b2+c2﹣bc=27.

∴bc=18.

∴SABC= = =


【解析】(1) ,代入可得 ;同理可得: .(2) =c, =b.由 =15,| |=3 ,∠BAC= .分别利用数量积运算性质、余弦定理可得bc,再利用三角形面积计算公式即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某人上午7时,乘摩托艇以匀速vkm/h(8≤v≤40)从A港出发到距100km的B港去,然后乘汽车以匀速wkm/h(30≤w≤100)自B港向距300km的C市驶去.应该在同一天下午4至9点到达C市. 设乘坐汽车、摩托艇去目的地所需要的时间分别是xh,yh.
(1)作图表示满足上述条件的x,y范围;
(2)如果已知所需的经费p=100+3(5﹣x)+2(8﹣y)(元),那么v,w分别是多少时p最小?此时需花费多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于向量a,b,e及实数x,y,x1,x2,,给出下列四个条件:
; ②
唯一; ④
其中能使a与b共线的是 ( )
A.①②
B.②④
C.①③
D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 fx)=x22ax+2x[03]

1a1 时,求 fx)的值域;

2)求 fx)的最小值 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆)的离心率是,点在短轴上,且

(1)球椭圆的方程;

(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=2cos(2x+)的图象向左平移个单位长度,得到函数y=fx)的图象.

(1)求fx)的单调递增区间;

(2)求fx)在[0,]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知yf(x)是定义在R上的偶函数,当x0时,f(x)=.

(1)求当x<0时,f(x)的解析式;

(2)作出函数f(x)的图象,并指出其单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的参数方程为 ,在同一平面直角坐标系中,将曲线C上的点按坐标变换 得到曲线C',以原点为极点,x轴的正半轴为极轴,建立极坐标系. (Ⅰ)求曲线C'的极坐标方程;
(Ⅱ)若过点 (极坐标)且倾斜角为 的直线l与曲线C'交于M,N两点,弦MN的中点为P,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,棱锥的地面是矩形, 平面,,.

(1)求证: 平面;

(2)求二面角的大小;

(3)求点到平面的距离.

查看答案和解析>>

同步练习册答案