精英家教网 > 高中数学 > 题目详情
求过原点作曲线C:y=x3-3x2+2x-1的切线方程.
考点:利用导数研究曲线上某点切线方程
专题:计算题,导数的概念及应用,直线与圆
分析:设切点为(x0y0),求出函数的导数,求出切线的斜率,求出切线方程,根据切线过原点,代入切线方程,再由切点在曲线上,得到方程,解方程,即可得到切点,进而得到切线方程.
解答: 解:设切点为(x0y0),
y′=3x2-6x+2,
∴切线斜率为3x02-6x0+2,
∴切线方程为y-y0=(3x02-6x0+2)(x-x0
∵切点在曲线C上
y0=x03-3x02+2x0-1,①
又切线过原点,
∴-y0=(3x02-6x0+2)(-x0),②
由①②得0=-2x0+3x0-1,
∴2x03-3x02+1=0,
因式分解得:(x0-1)2(2x0+1)=0,
x0=1或x0=-
1
2

∴两个切点为(1,-1),(-
1
2
,-
23
8

∴两条切线方程为y+1=-(x-1)和y+
23
8
=
23
4
x+
1
2

x+y=0或23x-4y=0.
点评:本题考查导数的几何意义:曲线在该点处的切线的斜率,考查直线方程的求法,考查运算能力,属于基础题和易错题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2-x+c同时满足下列二个条件:①f(0)=1,②方程f(x)=x有两个相等的实数根.
(1)求f(x)的解析式;
(2)设h(x)=x2-mx+2,若在区间[1,3]上,f(x)>h(x)恒成立,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)lg5•lg20-lg2•lg50-lg25;
(2)2log32-log3
32
9
+log38-5log53

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是正项数列,a1=2,an+12-an2=2,则an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求曲线y=f(x)=
1
2
x2-3x+2lnx在(3,f(3))处切线的斜率及切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

lim
n→∞
xn
=0,则实数x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,圆锥SO的底面圆半径|OA|=1,其侧面展开图是一个圆心角为
3
的扇形,求此圆锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平面正六边形ABCDEF中,不能和
AB
组成平面向量基底的是(  )
A、
AB
+
BC
B、
AB
-
AF
C、
DE
D、2
CD

查看答案和解析>>

科目:高中数学 来源: 题型:

在某招聘口试中,要从5道题中随机抽出3道进行回答,答对其中的2道题就获得优秀,答对其中的1道题就获得及格.若某应聘者只会回答5道题中的2道,则他获得及格或优秀的概率是
 

查看答案和解析>>

同步练习册答案