精英家教网 > 高中数学 > 题目详情

【题目】如图,点A,B分别是椭圆 的长轴的左右端点,点F为椭圆的右焦点,直线PF的方程为: 且PA⊥PF.
(1)求直线AP的方程;
(2)设点M是椭圆长轴AB上一点,点M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.

【答案】
(1)解:由题意得 ,A的坐标为(﹣6,0)

则直线AP的方程为:


(2)解:设M(m,0),则 ,解得m=2或m=18(舍去),故M(2,0).

,x∈[﹣6,6],

所以当 时,dmin2=15,即


【解析】(1)根据两直线垂直,求得AP的斜率,利用椭圆方程求得A的坐标,然后利用点斜式求得直线AP的方程.(2)设出点M的坐标,利用两点间的距离公式利用题设建立等式求得m,进而可利用两点间的距离公式,表示出椭圆上的点到点M的距离d,利用x的范围和二次函数的单调性求得函数的最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知全集U=R,A={x| ≤2x≤8},B={x|x>0},C={x|m<x<m+2}
(Ⅰ)求A∩(UB);
(Ⅱ)若A∩C=,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设Sn为等差数列{an}的前n项的和a1=1, ,则数列 的前2017项和为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H,则以下命题中,错误的命题是(
A.点H是△A1BD的垂心
B.AH垂直平面CB1D1
C.AH的延长线经过点C1
D.直线AH和BB1所成角为45°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设某种设备使用的年限x(年)与所支出的维修费用y(元)有以下统计资料:

使用年限x

2

3

4

5

6

维修费用y

2.2

3.8

5.5

6.5

7.0

参考数据:
如果由资料知y对x呈线性相关关系.试求:
(1)
(2)线性回归方程 =bx+a.
(3)估计使用10年时,维修费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,集合A={x∈R|2x﹣3≥0},B={x|1<x<2},C={x∈N|1≤x<a}.
(Ⅰ)求A∪B;
(Ⅱ)若C中恰有五个元素,求整数a的值;
(Ⅲ)若A∩C=,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 的离心率为 ,F1、F2为其左、右焦点,过F1的直线l交椭圆于A、B两点,△F1AF2的周长为
(1)求椭圆的标准方程;
(2)求△AOB面积的最大值(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:“1≤x≤5是x2﹣(a+1)x+a≤0的充分不必要条件”,命题q:“满足AC=6,BC=a,∠CAB=30°的△ABC有两个”.若¬p∧q是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心在x轴上,点 在圆C上,圆心到直线2x﹣y=0的距离为 ,则圆C的方程为(
A.(x﹣2)2+y2=3
B.(x+2)2+y2=9
C.(x±2)2+y2=3
D.(x±2)2+y2=9

查看答案和解析>>

同步练习册答案