设椭圆C1:的右焦点为F,P为椭圆上的一个动点.
(1)求线段PF的中点M的轨迹C2的方程;
(2)过点F的直线l与椭圆C1相交于点A、D,与曲线C2顺次相交于点B、C,当时,求直线l的方程.
(1);(2)
解析试题分析:(1)设点,而,根据为中点,可得将其代入椭圆方程整理可得点的轨迹方程。(2)为了省去对直线斜率的讨论,可设直线方程为,分别与两曲线方程联立消去得关于的一元二次方程,有求根公式可得方程的根,即各点的纵坐标。由已知,可得,即。从而可得的值。
试题解析:(1)设点,而,故点的坐标为,代入椭圆方程得:,即线段PF的中点M的轨迹C2的方程为:
(2)设直线l的方程为:,解方程组,,?当时,则,解方程组
,,由题设,可得,有,所以=,即(),由此解得:,故符合题设条件的其中一条直线的斜率;?当时,同理可求得另一条直线方程的斜率,故所求直线l的方程是.
考点:1代入法求轨迹问题;2直线和圆锥曲线的位置关系问题;3直线方程。
科目:高中数学 来源: 题型:解答题
如图,已知圆E ,点,P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.
(1)求动点Q的轨迹的方程;
(2)点,,点G是轨迹上的一个动点,直线AG与直线相交于点D,试判断以线段BD为直径的圆与直线GF的位置关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知顶点为原点的抛物线的焦点与椭圆的右焦点重合,与在第一和第四象限的交点分别为.
(1)若是边长为的正三角形,求抛物线的方程;
(2)若,求椭圆的离心率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分15分)
已知椭圆C:+=1的离心率为,左焦点为F(-1,0),
(1) 设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线L与椭圆C交于M,N两点,若,求直线L的方程;
(2)椭圆C上是否存在三点P,E,G,使得S△OPE=S△OPG=S△OEG=?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
我们将不与抛物线对称轴平行或重合且与抛物线只有一个公共点的直线称为抛物线的切线,这个公共点称为切点.解决下列问题:
已知抛物线上的点到焦点的距离等于4,直线与抛物线相交于不同的两点、,且(为定值).设线段的中点为,与直线平行的抛物线的切点为..
(1)求出抛物线方程,并写出焦点坐标、准线方程;
(2)用、表示出点、点的坐标,并证明垂直于轴;
(3)求的面积,证明的面积与、无关,只与有关.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中心在坐标原点,焦点在轴上的椭圆过点,且它的离心率.
(1)求椭圆的标准方程;
(2)与圆相切的直线交椭圆于两点,若椭圆上一点满足,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知抛物线C的顶点在原点,开口向右,过焦点且垂直于抛物线对称轴的弦长为2,过C上一点A作两条互相垂直的直线交抛物线于P,Q两点.
(1)若直线PQ过定点,求点A的坐标;
(2)对于第(1)问的点A,三角形APQ能否为等腰直角三角形?若能,试确定三角形APD的个数;若不能,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切。
(1)求椭圆的标准方程;
(2)若直线与椭圆相交于、两点,且,试判断的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线.
(1)若圆心在抛物线上的动圆,大小随位置而变化,但总是与直线相切,求所有的圆都经过的定点坐标;
(2)抛物线的焦点为,若过点的直线与抛物线相交于两点,若,求直线的斜率;
(3)若过点且相互垂直的两条直线,抛物线与交于点与交于点.
证明:无论如何取直线,都有为一常数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com