精英家教网 > 高中数学 > 题目详情
已知在△ABC中,AB=3,∠A=60°,∠A的平分线AD交边BC于点D,且
AD
AC
+
1
6
AB
(λ∈R),则AD的长为(  )
A、
3
2
B、
3
C、1
D、2
考点:平面向量的基本定理及其意义,向量加减混合运算及其几何意义
专题:平面向量及应用
分析:如图所示,过点D分别作DE∥AC交AB于点E,DF∥AB交AC于点F,由于B,D,C三点在同一条直线上,可得λ+
1
6
=1
.又
AB
AC
=
BD
DC
,可得AC=
3
5
.再利用数量积的性质即可得出.
解答: 解:如图所示,
过点D分别作DE∥AC交AB于点E,DF∥AB交AC于点F,
∵B,D,C三点在同一条直线上,则λ+
1
6
=1

λ=
5
6

AB
AC
=
BD
DC
=
5
6
1
6
=5,∴AC=
3
5

AD
2
=(
5
6
AC
+
1
6
AB
)2
=
25
36
AC
2
+
1
36
AB
2
+2×
5
6
×
1
6
×|
AC
| |
AB
|cos60°

=
25
36
×
9
25
+
1
36
×9+
5
18
×
3
5
×3×
1
2
=
3
4

|
AD
|
=
3
2

故选:A.
点评:本题考查了向量共线定理、平行四边形法则、角平分线性质定理、数量积的性质等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系中,不等式
x+y≥0
x-y≥0
x≤a
(a为常数)表示的平面区域的面积为8,则
x+y+2
x+3
的最小值为(  )
A、8
2
-10
B、5-4
2
C、6-4
2
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,
CB
CA
=
BC
BA
,则△ABC是(  )
A、等腰直角三角形
B、等边三角形
C、等腰三角形
D、直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读如图的程序框图,运行相应的程序,若输出S=
2013
2014
,则判断框内应填入(  )
A、i≥2014
B、i≥2015
C、i>2014
D、i>2015

查看答案和解析>>

科目:高中数学 来源: 题型:

若用C、R和I分别表示复数集、实数集和纯虚数集,其中C为全集,那么有(  )
A、C=R∪I
B、R∪∁CI=R
C、∁CR=C∩I
D、∁CR∩I=I

查看答案和解析>>

科目:高中数学 来源: 题型:

若某几何体的三视图(单位:cm)如图所示,则此几何体的体积为(  )
A、30B、24C、10D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax+1,x≥t
x2+ax,x<t
,若存在实数t使得f(x)在R上为单调函数,则a的取值范围是(  )
A、a≥0B、a<0
C、a≤tD、a<-t

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,输出的结果是15,则a的初始值m(m>0)有多少种可能(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinxcosx+2cos2x+m在区间[0,
π
3
]上的最大值为2.
(1)求常数m的值;
(2)在△ABC中,角A,B,C所对的边长分别为a,b,c,若f(A)=1,sinB=3sinC,△ABC面积为
9
3
4
,求边长a.

查看答案和解析>>

同步练习册答案