精英家教网 > 高中数学 > 题目详情

【题目】已知点,圆

(1)若点在圆内,求的取值范围;

(2)若过点的圆的切线只有一条,求切线的方程;

(3)当时,过点的直线被圆截得的弦长为,求直线的方程。

【答案】(1);(2)答案见解析;(3x-y+2=07x+y-10=0

【解析】

(1)由题意求解不等式确定a的取值范围即可;

(2)首先确定a的值,然后求解切线方程即可;

(3)首先求得直线的斜率,然后求解直线方程即可.

1)由题意可得:,求解不等式可得的取值范围是

2)由题意可知,点在圆上,故

时,切线的斜率为,切线方程为

时,切线的斜率为,切线方程为

3)设圆心到直线的距离为,由题意可得,故

很明显直线的斜率存在,设直线方程为,即

由题意可得:

解得:

方程为:x-y+2=07x+y-10=0

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】公交车的数量太多容易造成资源浪费,太少又难以满足乘客的需求,为了合理布置车辆,公交公司在2路车的乘客中随机调查了50名乘客,经整理,他们候车时间(单位:)的茎叶图如下:

(Ⅰ)将候车时间分为八组,作出相应的频率分布直方图;

(Ⅱ)若公交公司将2路车发车时间调整为每隔15发一趟车,那么上述样本点将发生变化(例如候车时间为9的不变,候车时间为17的变为2),现从2路车的乘客中任取5人,设其中候车时间不超过10的乘客人数为,求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知M(x1y1)是椭圆=1(a>b>0)上任意一点,F为椭圆的右焦点.

(1)若椭圆的离心率为e,试用eax1表示|MF|,并求|MF|的最值;

(2)已知直线m与圆x2y2b2相切,并与椭圆交于AB两点,且直线m与圆的切点Qy轴右侧,若a=4,求△ABF的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点.

(1)求椭圆的标准方程;

(2)四边形的顶点在椭圆上,且对角线过原点,若,求证;四边形的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下给出五个命题,其中真命题的序号为______

①函数在区间上存在一个零点,则的取值范围是

②“任意菱形的对角线一定相等”的否定是“菱形的对角线一定不相等”;

④若,则

⑤“”是“成等比数列”的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆: 的右顶点、上顶点分别为,坐标原点到直线的距离为,且,则椭圆的方程为( )

A. B. C. D.

【答案】D

【解析】

写出直线的方程,利用原点到直线的距离,以及列方程组,解方程组求得的值,进而求得椭圆的方程.

椭圆右顶点坐标为,上顶点坐标为,故直线的方程为,即,依题意原点到直线的距离为,且,由此解得,故椭圆的方程为,故选D.

【点睛】

本小题主要考查过两点的直线方程,考查点到直线的距离公式,考查椭圆标准方程的求法,考查了方程的思想.属于中档题.

型】单选题
束】
11

【题目】若实数满足,则的最小值是( )

A. 0 B. C. -6 D. -3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中为常数.

1求曲线在点处的切线方程

2求证:有且仅有两个零点;

3为整数且当恒成立的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为研究昼夜温差大小与某疾病的患病人数之间的关系,经查询得到今年上半年每月15号的昼夜温差情况与患者的人数如表:

日期

115

215

315

415

515

615

昼夜温差

10

11

10

10

9

7

患者人数

21

26

20

18

16

8

研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.

若选取的是1月与6月的两组数据,请根据25月份的数据,求出y关于x的线性回归方程

若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问中所得线性回归方程是否理想?

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆,点是圆上任意一点,线段的垂直平分线和半径相交于.

(1)求动点的轨迹的方程;

(2)已知是轨迹的三个动点,点在一象限, 关于原点对称,且,问的面积是否存在最小值?若存在,求出此最小值及相应直线的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案