精英家教网 > 高中数学 > 题目详情
17.如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E是棱BC的中点,点F是棱CD的中点.
(1)求证:EF∥B1D1
(2)求二面角C1-EF-A的大小(结果用反三角函数值表示).

分析 (1)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能证明EF∥B1D1
(2)求出平面C1EF的一个法向量和平面ABCD的一个法向量,利用向量法求出二面角C1-EF-A的大小.

解答 证明:(1)如图,以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系.(1分)
则 ${D_1}(0,0,1),{B_1}(1,1,1),E(\frac{1}{2},1,0),F(0,\frac{1}{2},0),{C_1}(0,1,1)$,
$\overrightarrow{EF}=(-\frac{1}{2},-\frac{1}{2},0)$,$\overrightarrow{{B_1}{D_1}}=(-1,-1,0)$(4分
∴$\overrightarrow{{B_1}{D_1}}=2\overrightarrow{EF}$.(5分)
∴EF∥B1D1.(6分)
解:(2)设$\overrightarrow{n_1}=(u,v,w)$是平面C1EF的一个法向量.
$\overrightarrow{F{C}_{1}}$=(0,$\frac{1}{2},1$),
则$\left\{\begin{array}{l}{\overrightarrow{{n}_{1}}•\overrightarrow{F{C}_{1}}=\frac{1}{2}v+w=0}\\{\overrightarrow{{n}_{1}}•\overrightarrow{EF}=-\frac{1}{2}u-\frac{1}{2}v=0}\end{array}\right.$,取w=1,得$\overrightarrow{n_1}=(2,-2,1)$(9分)
因为DD1⊥平面ABCD,所以平面ABCD的一个法向量是$\overrightarrow{n_2}=(0,0,1)$(10分)
设$\overrightarrow{n_1}$与$\overrightarrow{n_2}$的夹角为α,则$cosα=\frac{{\overrightarrow{n_1}•\overrightarrow{n_2}}}{{|\overrightarrow{n_1}|•|\overrightarrow{n_2}|}}=\frac{1}{3}$…(11分)
结合图形,判别得二面角C1-EF-A是钝角,
∴二面角C1-EF-A的大小为$π-arccos\frac{1}{3}$…(12分)

点评 本题考查线线平行的证明,考查二面角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.函数y=3+x+2$\sqrt{x+1}$的最小值是(  )
A.4+2$\sqrt{2}$B.1C.5D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.从$(x-\frac{a}{{\sqrt{x}}})\begin{array}{l}5\\{\;}\end{array}$的展开式中任选一项,则字母x的幂指数为整数的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.等比数列{an}中,已知a1=2,a4=16.
(1)求数列{an}的通项公式an
(2)若a3,a5分别是等差数列{bn}的第4项和第16项,求数列{bn}的通项公式及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=sinx+$\frac{2}{sinx}$,试判断f(x)在(0,π)内的增减性,且证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(-2-x),且函数y=f(x-1)为偶函数,f(-3)=e,则不等式f(x)<ex的解集为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,长方体ABCD-A1B1C1D1中,AB=2,BC=CC1=1,点P是CD上一点,PC=tPD.
(1)若t=$\frac{1}{3}$,求证:A1C⊥平面PBC1
(2)设t=1,t=3所对应的点P分别为点P1,P2,求二面角P1-BC1-P2的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的图象与x轴交点的横坐标构成一个公差为$\frac{π}{2}$的等差数列,把函数f(x)的图象沿x轴向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象.若在区间[0,π]上随机取一个数x,则事件“g(x)≥$\sqrt{3}$”发生的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.△ABC中,A=120°,a=4,c=2,则边长b为(  )
A.$\sqrt{13}$+1B.$\sqrt{13}$-1C.2$\sqrt{3}$+1D.2$\sqrt{3}$-1

查看答案和解析>>

同步练习册答案