【题目】如图,在平面直角坐标系中,椭圆:的左右焦点分别为,,椭圆右顶点为,点在圆:上.
(1)求椭圆的标准方程;
(2)点在椭圆上,且位于第四象限,点在圆上,且位于第一象限,已知,求直线的斜率.
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦点为,,离心率为,点P为椭圆C上一动点,且的面积最大值为,O为坐标原点.
(1)求椭圆C的方程;
(2)设点,为椭圆C上的两个动点,当为多少时,点O到直线MN的距离为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(其中为参数),以原点为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的焦点的极坐标;
(2)若曲线的上焦点为,直线与曲线交于,两点,,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】市扶贫工作组从4男3女共7名成员中选出队长1人,副队长1人,普通队员2人组成4人工作小组下乡,要求工作组中至少有1名女同志,且队长和副队长不能都是女同志,共有______种安排方法.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,棱长为1的正方体中,是线段上的动点,则下列结论正确的是( ).
①异面直线与所成的角为
②
③三棱锥的体积为定值
④的最小值为2.
A.①②③B.①②④C.③④D.②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器。现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:
维修次数 | 0 | 1 | 2 | 3 |
台数 | 5 | 10 | 20 | 15 |
以这50台机器维修次数的频率代替1台机器维修次数发生的概率,记X表示这2台机器超过质保期后延保的两年内共需维修的次数。
(1)求X的分布列;
(2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中为实数,为自然对数的底数.
(1)求函数的单调区间;
(2)是否存在实数,使得对任意给定的,在区间上总存在三个不同的,使得成立?若存在,求出实数的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|2x﹣3|+|x+2|
(1)求不等式f(x)≤5的解集;
(2)若关于x的不等式f(x)≤a﹣|x|在区间[﹣1,2]上恒成立,求实数a的取值范围
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com