精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,椭圆的左右焦点分别为,椭圆右顶点为,点在圆.

1)求椭圆的标准方程;

2)点在椭圆上,且位于第四象限,点在圆上,且位于第一象限,已知,求直线的斜率.

【答案】(1)(2)

【解析】

1)由题意知的值,及之间的关系求出椭圆的标准方程;
2)设的坐标,设直线的方程,由向量的关系可得三点关系,直线与圆联立求出的坐标,直线与椭圆联立求出的坐标,再由向量的关系求出参数,进而求出直线的斜率.

1)圆的圆心,半径,与轴交点坐标为

在圆上,所以,从而

所以,所以椭圆的标准方程为.

2)由题,设点;点.

,由知点共线.

直线的斜率存在,可设为,则直线的方程为

,得,或

所以

,得,解得,或

所以

代入

,又,得

所以,又,可得直线的斜率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过点作一直线与双曲线相交于两点,若中点,则( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点为,离心率为,点P为椭圆C上一动点,且的面积最大值为O为坐标原点.

(1)求椭圆C的方程;

(2)设点为椭圆C上的两个动点,当为多少时,点O到直线MN的距离为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为(其中为参数),以原点为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求曲线的焦点的极坐标;

2)若曲线的上焦点为,直线与曲线交于两点,,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市扶贫工作组从43女共7名成员中选出队长1人,副队长1人,普通队员2人组成4人工作小组下乡,要求工作组中至少有1名女同志,且队长和副队长不能都是女同志,共有______种安排方法.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,棱长为1的正方体中,是线段上的动点,则下列结论正确的是( ).

①异面直线所成的角为

③三棱锥的体积为定值

的最小值为2

A.①②③B.①②④C.③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器。现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:

维修次数

0

1

2

3

台数

5

10

20

15

以这50台机器维修次数的频率代替1台机器维修次数发生的概率,记X表示这2台机器超过质保期后延保的两年内共需维修的次数。

(1)求X的分布列;

(2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为实数,为自然对数的底数.

1)求函数的单调区间;

2)是否存在实数,使得对任意给定的,在区间上总存在三个不同的,使得成立?若存在,求出实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=|2x3|+|x+2|

1)求不等式fx≤5的解集;

2)若关于x的不等式fxa|x|在区间[12]上恒成立,求实数a的取值范围

查看答案和解析>>

同步练习册答案