精英家教网 > 高中数学 > 题目详情

【题目】近年来,南宁大力实施二产补短板、三产强优势、一产显特色策略,着力发展实体经济,工业取得突飞猛进的发展.逐步形成了以电子信息、机械装备、食品制糖、铝深加工等为主的4大支柱产业.广西洋浦南华糖业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据,如下表所示,已知.

1)求出q的值;

2)已知变量xy具有线性相关关系,求产品销量y()关于试销单价x()的线性回归方程

3)用表示用(2)中所求的线性回归方程得到的与对应的产品销量的估计值.当销售数据对应的残差的绝对值时,则将销售数据称为一个好数据”.现从6个销售数据中任取3个,求好数据个数的数学期望.

(参考公式:线性回归方程中的最小二乘估计分别为:

【答案】1;(2;(3.

【解析】

1)利用列方程,由此求得的值.

2)根据回归直线方程计算公式,计算出回归直线方程.

3)求得,以及残差的绝对值,利用超几何分布分布列的计算公式,计算出的分布列,并求得数学期望.

1)依题意,解得.

2)依题意.所以.

3)列表得:

4

5

6

7

8

9

90

84

83

80

75

68

90

86

82

78

74

70

0

2

1

2

1

2

所以,好数据有三个.于是的可能取值为.

.所以数学期望为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2019年安庆市在大力推进城市环境、人文精神建设的过程中,居民生活垃圾分类逐渐形成意识.有关部门为宣传垃圾分类知识,面向该市市民进行了一次垃圾分类知识"的网络问卷调查,每位市民仅有一次参与机会,通过抽样,得到参与问卷调查中的1000人的得分数据,其频率分布直方图如图:

1)由频率分布直方图可以认为,此次问卷调查的得分Z服从正态分布近似为这1000人得分的平均值(同一组数据用该区间的中点值作代表),利用该正态分布,求P);

2)在(1)的条件下,有关部门为此次参加问卷调查的市民制定如下奖励方案:

i)得分不低于可获赠2次随机话费,得分低于则只有1次:

ii)每次赠送的随机话费和对应概率如下:

赠送话费(单位:元)

10

20

概率

现有一位市民要参加此次问卷调查,记X(单位:元)为该市民参加问卷调查获赠的话费,求X的分布列.附:,若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】秉承“绿水青山就是金山银山”的发展理念,某市环保部门通过制定评分标准,先对本市的企业进行评估,评出四个等级,并根据等级给予相应的奖惩,如下表所示:

评估得分

评定等级

不合格

合格

良好

优秀

奖励(万元)

环保部门对企业评估完成后,随机抽取了家企业的评估得分(分)为样本,得到如下频率分布表:

评估得分

频率

其中表示模糊不清的两个数字,但知道样本评估得分的平均数是.

1)现从样本外的数百个企业评估得分中随机抽取个,若以样本中频率为概率,求该家企业的奖励不少于万元的概率;

2)现从样本“不合格”、“合格”、“良好”三个等级中,按分层抽样的方法抽取家企业,再从这家企业随机抽取家,求这两家企业所获奖励之和不少于万元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年末,武汉出现新型冠状病毒肺炎()疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从27日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为)且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为,当时,最大,则

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某建筑工地搭建的脚手架局部类似于一个3×2×3的长方体框架,一个建筑工人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在上的函数.

1)求函数的单调区间;

2)若满足,则称更接近.,试比较哪个更接近,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位准备购买三台设备,型号分别为已知这三台设备均使用同一种易耗品,提供设备的商家规定:可以在购买设备的同时购买该易耗品,每件易耗品的价格为100元,也可以在设备使用过程中,随时单独购买易耗品,每件易耗品的价格为200.为了决策在购买设备时应购买的易耗品的件数.该单位调查了这三种型号的设备各60台,调査每台设备在一个月中使用的易耗品的件数,并得到统计表如下所示.

每台设备一个月中使用的易耗品的件数

6

7

8

型号A

30

30

0

频数

型号B

20

30

10

型号C

0

45

15

将调查的每种型号的设备的频率视为概率,各台设备在易耗品的使用上相互独立.

1)求该单位一个月中三台设备使用的易耗品总数超过21件的概率;

2)以该单位一个月购买易耗品所需总费用的期望值为决策依据,该单位在购买设备时应同时购买20件还是21件易耗品?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某健身房为了解运动健身减肥的效果,调查了名肥胖者健身前(如直方图(1)所示)后(如直方图(2)所示)的体重(单位:)变化情况:

对比数据,关于这名肥胖者,下面结论正确的是( )

A.他们健身后,体重在区间内的人数较健身前增加了

B.他们健身后,体重原在区间内的人员一定无变化

C.他们健身后,人的平均体重大约减少了

D.他们健身后,原来体重在区间内的肥胖者体重都有减少

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,平面五边形是由边长为2的正方形与上底为1,高为直角梯形组合而成,将五边形沿着折叠,得到图2所示的空间几何体,其中.

1)证明:平面

2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案