精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知a+b=5,c= ,且4sin2 ﹣cos2C=
(1)求角C的大小;
(2)求△ABC的面积.

【答案】
(1)解:∵A+B+C=180°,由 ,得

整理得:4cos2C﹣4cosC+1=0,

解得:

由于:0<C<π,

可得:C=


(2)解:∵由余弦定理可得:c2=a2+b2﹣2abcosC,即:7=a2+b2﹣ab,

∴7=(a+b)2﹣3ab,

∵由条件a+b=5,

∴可得:7=25﹣3ab,解得:ab=6,


【解析】(1)由三角函数恒等变换的应用化简已知等式可得4cos2C﹣4cosC+1=0,可求 ,结合范围0<C<π,即可得解C的值.(2)由余弦定理可得7=(a+b)2﹣3ab,结合条件a+b=5,可求ab的值,进而利用三角形面积公式即可计算得解.
【考点精析】解答此题的关键在于理解余弦定理的定义的相关知识,掌握余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足:a1=﹣13,a6+a8=﹣2,且an1=2an﹣an+1(n≥2),则数列{ }的前13项和为(
A.
B.﹣
C.
D.﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)是奇函数,且在(0,+∞)上是增函数,又f(﹣3)=0,则(x﹣1)f(x)<0的解是(
A.(﹣3,0)∪(1,+∞)
B.(﹣3,0)∪(0,3)
C.(﹣∞,﹣3)∪(3,+∞)
D.(﹣3,0)∪(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知六棱锥P﹣ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB则下列结论正确的是(
A.PB⊥AD
B.平面PAB⊥平面PBC
C.直线BC∥平面PAE
D.直线PD与平面ABC所成的角为45°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设A、B分别为双曲线 的左右顶点,双曲线的实轴长为4 ,焦点到渐近线的距离为
(1)求双曲线的方程;
(2)已知直线 与双曲线的右支交于M、N两点,且在双曲线的右支上存在点D,使 ,求t的值及点D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°)的值是(
A.16
B.8
C.4
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,我艇在A处发现一走私船在方位角45°且距离为12海里的B处正以每小时10海里的速度向方位角105°的方向逃窜,我艇立即以14海里/小时的速度追击,求我艇追上走私船所需要的最短时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式(m﹣1)x2+(m﹣1)x+2>0
(1)若m=0,求该不等式的解集
(2)若该不等式的解集是R,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】调查某车间20名工人的年龄,第i名工人的年龄为ai,具体数据见表:

i

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

ai

29

28

30

19

31

28

30

28

32

31

30

31

29

29

31

32

40

30

32

30


(1)作出这20名工人年龄的茎叶图;
(2)求这20名工人年龄的众数和极差;
(3)执行如图所示的算法流程图(其中 是这20名工人年龄的平均数),求输出的S值.

查看答案和解析>>

同步练习册答案