精英家教网 > 高中数学 > 题目详情
5.下列命题中正确的是(  )
A.经过平面外一点有且只有一条直线与已知平面垂直
B.经过平面外一点有且只有一条直线与已知平面平行
C.经过平面外一点有且只有一条直线与已知直线垂直
D.经过平面外一点有且只有一平面与已知平面垂直

分析 A,如果过一点有两条直线与平面垂直,那么这两条直线平行,与两直线交于一点矛盾;
B,经过平面外一点有无数条直线与已知平面平行,它们在该平面的一个平行平面内;
C,经过平面外一点有无数条直线与已知直线垂直,它们在该直线的一个垂面内;
D,经过平面外一点有无数个平面与已知平面垂直;

解答 解:对于A,如果过一点有两条直线与平面垂直,那么这两条直线平行,与两直线交于一点矛盾,故正确;
对于B,经过平面外一点有无数条直线与已知平面平行,它们在该平面的一个平行平面内,故错;
对于C,经过平面外一点有无数条直线与已知直线垂直,它们在该直线的一个垂面内,故错;
对于D,经过平面外一点有无数个平面与已知平面垂直,故错;
故选:A.

点评 本题考查命题真假的判断,注意空间中线线、线面、面面间的位置关系的合理运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设k为常数,且$cos(\frac{π}{4}-α)=k$,则用k表示sin2α的式子为sin2α=2k2-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知三个数1,a,9成等比数列,则圆锥曲线$\frac{x^2}{a}+\frac{y^2}{2}=1$的离心率为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\sqrt{5}$C.$\sqrt{5}$或$\frac{{\sqrt{10}}}{2}$D.$\frac{{\sqrt{3}}}{3}$或$\frac{{\sqrt{10}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如果a>b>0,那么下列不等式一定成立的是(  )
A.|a|<|b|B.$\frac{1}{a}>\frac{1}{b}$C.${(\frac{1}{2})^a}>{(\frac{1}{2})^b}$D.lna>lnb

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在平行四边形ABCD中,AB=4$\sqrt{2}$,BC=2,点P在CD上,且$\overrightarrow{CP}$=3$\overrightarrow{PD}$,∠BAD=$\frac{π}{4}$,则$\overrightarrow{AP}$•$\overrightarrow{PB}$=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点分别是F1,F2,M是双曲线上的一点,且|MF1|=$\sqrt{3}$,|MF2|=1,∠MF1F2=30°,则该双曲线的离心率是(  )
A.$\sqrt{3}-1$B.$\sqrt{3}+1$C.$\frac{{\sqrt{3}+1}}{2}$D.$\sqrt{3}+1$或$\frac{{\sqrt{3}+1}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.复数z满足(1+i)z=i+2,则z的虚部为(  )
A.$\frac{3}{2}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{1}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入a,b的值分别为16,24,则输出的a的值为(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.按如图所示的程序框图,在运行后输出的结果为(  )
A.55B.56C.65D.66

查看答案和解析>>

同步练习册答案