精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线 ,直线 交于 两点,且 ,其中 为坐标原点.
(1)求抛物线 的方程;
(2)已知点 的坐标为(-3,0),记直线 的斜率分别为 ,证明: 为定值.

【答案】
(1)解:设 ,联立方程组 ,消元得
所以 .又 所以 ,从而
(2)解:因为
所以 .因此

,所以
为定值
【解析】(1)根据题意联立直线和抛物线的方程消元,得到关于y的一元二次方程结合韦达定理分别求出 y1 + y 2、 y1 y2的值,把上式代入到向量数量积的坐标公式即可求出p的值。(2)根据题意由斜率的坐标公式分别求出 k1、 k2的代数式,再结合韦达定理把数值代入到要求证的代数式,整理可得出结论。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知ABC的角ABC所对的边分别为abc,设向量=(ab),=(sin B,sin A), =(b-2,a-2).

(1),求证:ABC为等腰三角形;

(2),边长c=2,∠C,求ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,.

(1)f(x)的最小正周期和最大值;(2)讨论f(x)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l:ax+ y﹣1=0与x,y轴的交点分别为A,B,直线l与圆O:x2+y2=1的交点为C,D.给出下列命题:p:a>0,SAOB= ,q:a>0,|AB|<|CD|.则下面命题正确的是(
A.p∧q
B.¬p∧¬q
C.p∧¬q
D.¬p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】手机完全充满电量,在开机不使用的状态下,电池靠自身消耗一直到出现低电量警告之间所能维持的时间称为手机的待机时间。

为了解A,B两个不同型号手机的待机时间,现从某卖场库存手机中随机抽取A,B两个型号的手机各5台,在相同条件下进行测试,统计结果如下:

手机编号

1

2

3

4

5

A型待机时间(h)

120

125

122

124

124

B型待机时间(h)

118

123

127

120

a

已知A,B两个型号被测试手机待机时间的平均值相等。

(Ⅰ)求a的值;

(Ⅱ)求A型号被测试手机待机时间方差和标准差的大小;

(Ⅲ)从被测试的手机中随机抽取A,B型号手机各1台,求至少有1台的待机时间超过122小时的概率。

(注:n个数据的方差,其中为数据的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分10分)已知等差数列{an}满足a1+a2=10,a4-a3=2.

(1)求{an}的通项公式.

(2)设等比数列{bn}满足b2=a3,b3=a7.问:b6与数列{an}的第几项相等?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线与坐标轴的交点都在圆上.

(1)求圆的方程;

(2)若圆与直线交于两点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ab为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与ab都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:

当直线ABa60°角时,ABb30°角;

当直线ABa60°角时,ABb60°角;

直线ABa所成角的最小值为45°;

直线ABa所成角的最大值为60°.

其中正确的是________.(填写所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体为一简单组合体在底面平面

(1)求证:平面平面

(2)求该组合体的体积

查看答案和解析>>

同步练习册答案