精英家教网 > 高中数学 > 题目详情
已知a和b是任意非零实数.
(1)求的最小值.
(2)若不等式|2a+b|+|2a-b|≥|a|(|2+x|+|2-x|)恒成立,求实数x的取值范围.
【答案】分析:(1)利用绝对值不等式的性质可得  ==4.
(2)由题意可得|2+x|+|2-x|≤ 恒成立,由于的最小值为4,故有x的
范围即为不等式|2+x|+|2-x|≤4的解集,解绝对值不等式求得实数x的取值范围.
解答:解:(1)∵==4,
的最小值为4.
(2)若不等式|2a+b|+|2a-b|≥|a|(|2+x|+|2-x|)恒成立,
 即|2+x|+|2-x|≤ 恒成立,故|2+x|+|2-x|不大于 的最小值.(4分)
由(1)可知,的最小值为4,当且仅当(2a+b)(2a-b)≥0时取等号,
的最小值等于4.(8分)
∴x的范围即为不等式|2+x|+|2-x|≤4的解集.
解不等式得-2≤x≤2,故实数x的取值范围为[-2,2]. (10分)
点评:本题考查查绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a和b是任意非零实数.
(1)求
|2a+b|+|2a-b||a|
的最小值.
(2)若不等式|2a+b|+|2a-b|≥|a|(|2+x|+|2-x|)恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河北省高三第一次高考仿真测试理科数学试卷(解析版) 题型:解答题

选修4—5;不等式选讲

已知a和b是任意非零实数.

(1)求的最小值.

(2)若不等式恒成立,求实数x的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年宁夏银川高三第二次模拟数学理卷 题型:解答题

选修4—5;不等式选讲

已知a和b是任意非零实数.

(1)求的最小值。

(2)若不等式恒成立,求实数x的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知a和b是任意非零实数.
(1)求
|2a+b|+|2a-b|
|a|
的最小值.
(2)若不等式|2a+b|+|2a-b|≥|a|(|2+x|+|2-x|)恒成立,求实数x的取值范围.

查看答案和解析>>

同步练习册答案