精英家教网 > 高中数学 > 题目详情
在圆x2+y2=16上任取一点P,过点P做x轴的垂线段PD,D是垂足.当点P在圆上运动时,线段PD的中点M的轨迹是什么?
考点:轨迹方程
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:设出M点的坐标,由M为线段PD的中点得到P的坐标,把P的坐标代入圆x2+y2=16整理得线段PD的中点M的轨迹.
解答: 解:设M(x,y),由题意D(x,0),P(x,y1
∵M为线段PD的中点,∴y1+0=2y,y1=2y.
又∵P(x,y1)在圆x2+y2=16上,
∴x2+4y2=16,即
x2
16
+
y2
4
=1

∴点M的轨迹是椭圆.
点评:本题考查了轨迹方程的求法,训练了利用代入法求曲线的方程,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,y轴正半轴上的点列{An}与曲线y=
2x
(x>0)上的点列{Bn}满足|OAn|=|OBn|=
1
n
,直线AnBn
在x轴上的截距为an,点Bn的横坐标为bn,n∈N*
(1)证明:an>an+1>4,n∈N*
(2)证明:存在n0∈N*,使得对任意的n>n0,都有
b2
b1
+
b3
b2
+…+
bn
bn-1
+
bn+1
bn
<n-2004.

查看答案和解析>>

科目:高中数学 来源: 题型:

若(x+
2
x2
12的二项展开式中的常数项为m,则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1
(1)求证:直线BD∥平面AB1D1
(2)求证:平面BDC1∥平面AB1D1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(3,1),在抛物线y2=2x上找一点P,使得|PF|+|PA|取最小值(F为抛物线的焦点),此时点P的坐标是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)是某简谐运动的函数解析式,如图为该函数在一个周期内的图象,A为图象的最高点,坐标为A(
2
3
,2
3
)、B、C为图象与x轴的交点,且为正三角形.
(1)求该简谐运动的函数解析式;
(2)若f(x0)=
8
3
5
,且x0∈(-
10
3
2
3
),求f(x0+2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+ax+1开口向上,满足f(f(1))=f(3),则-2a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a+
2
2x-1
为奇函数.
(Ⅰ)求实数a的值;
(Ⅱ)证明|f(x)|>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an},a2+a3+a4=15,an>0,且a2,a3+4,a4+20为等比数列{bn}的前三项.
(1)求{an},{bn}的通项公式.
(2)若数列cn=an•bn,求数列{cn}的前n项和Sn

查看答案和解析>>

同步练习册答案