精英家教网 > 高中数学 > 题目详情
1.在长为10cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积不小于9cm2的概率为$\frac{4}{5}$.

分析 根据几何概型的概率公式,设AC=x,则BC=10-x,由矩形的面积S=x(10-x)≥9可求x的范围,利用几何概率的求解公式可求.

解答 解:设AC=x,则BC=10-x,
矩形的面积S=x(10-x)≥9,
∴x2-10x+9≤0,
∴1≤x≤9,
由几何概率的求解公式可得,矩形面积不小于9cm2的概率P=$\frac{8}{10}=\frac{4}{5}$,
故答案为:$\frac{4}{5}$.

点评 本题主要考查了二次不等式的解法,与区间长度有关的几何概率的求解公式的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设an=(2n+1)p,bn=(2n)p+(2n-1)p,其中p,n∈N+
(1)当p=2时,试比较an与bn的大小;
(2)当p=n时,求证:an≥bn对?n∈N+恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,得曲线C的极坐标方程为ρ=2sinθ.
(1)求C的参数方程;
(2)若直线l:$\sqrt{3}$x-y+m=0与曲线C相切,求切点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知某市野生动物园中有猛虎出没,三位青年为抄近路返回市区(从A点出发,沿y轴负方向走直线),决定冒险穿越野生动物园,如图,设老虎出没的区域为圆C:(x-2)2+(y-4)2=$\frac{25}{4}$所含区域,三位青年从A(0,6)到O需要40min,若三位青年在老虎出没的地区逗留时间超过15min就有生命危险.问:三位青年是否有生命危险?(假设三位青年以匀速返回市区)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,在△OAB中,点P在边AB上,且AP:PB=3:2.则$\overrightarrow{OP}$=(  )
A.$\frac{3}{5}\overrightarrow{OA}+\frac{2}{5}\overrightarrow{OB}$B.$\frac{2}{5}\overrightarrow{OA}+\frac{3}{5}\overrightarrow{OB}$C.$\frac{3}{5}\overrightarrow{OA}-\frac{2}{5}\overrightarrow{OB}$D.$\frac{2}{5}\overrightarrow{OA}-\frac{3}{5}\overrightarrow{OB}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知i是虚数单位,则复数i(1+i)的共轭复数为(  )
A.1+iB.l-iC.-l+iD.-l-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.正方体ABCD-A1B1C1D1的棱长为a,E,F分别是BB1,CD的中点,则点F到平面A1D1E的距离为(  )
A.$\frac{3}{10}$aB.$\frac{3\sqrt{7}}{10}$aC.$\frac{3\sqrt{5}}{10}$aD.$\frac{7}{10}$a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)的定义域是R,且满足下列三个条件
①对于任意的a,b∈R,都有f(a+b)=f(a)+f(b);
②f(1)=-2;
③当x>0时,f(x)<0.
(1)判断f(x)的奇偶性与单调性;
(2)求函数f(x)在[-3,3]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某校安排小李等5位实习教师到一、二、三班实习,若要求每班至少安排一人且小李到一班,则不同的安排方案种数为50.(用数字作答)

查看答案和解析>>

同步练习册答案