精英家教网 > 高中数学 > 题目详情
本小题满分12分)
如图,在六面体中,四边形ABCD是边长为2的正方形,四边形是边长为1的正方形,平面,平面ABCD,DD1=2。

(1)求证:与AC共面,与BD共面.   
(2)求证:平面
(3)求二面角的大小.

(1)略
(2)略
(3)
解法一:(几何法)略
解法二:(向量法)以D为原点,以DA,DC,所在直线分别为x轴,y轴,z轴建立空间直角坐标系如图,

则有A(2,0,0),B(2,2,0),C(0,2,0),
(1)证明:


于是与AC共面,与BD共面.(4分)
(2)证明:


内的两条相交直线,
 又
(8分)
(3)解:


于是


于是
 
结合图形可知所求二面角为钝角
(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)在四棱锥P-ABCD中,∠ABC=∠ACD=90°,
∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(1)求证:PC⊥
(2)求证:CE∥平面PAB;
(3)求三棱锥P-ACE的体积V.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知矩形ABCD所在平面,M、N分别是AB、PC的中点。

(1)求证:平面PAD;
(2)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,直平行六面体ABCD-A1B1C1D1的高为3,
底面是边长为4, 且∠BAD=60°的菱形,AC∩
BD=O,A1C1∩B1D1=O1,E是线段AO1上一点.
(Ⅰ)求点A到平面O1BC的距离;
(Ⅱ)当AE为何值时,二面角E-BC-D的大小为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知三棱锥A-PBC ∠ACB=90°
AB=20  BC=4  PAPC,D为AB中点且△PDB为正三角形
(1)求证:BC⊥平面PAC;
(2)求三棱锥D-PBC的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
正△的边长为4,边上的高,分别是边的中点,现将△沿翻折成直二面角

(1)试判断直线与平面的位置关系,并说明理由;
(2)求二面角的余弦值;
(3)在线段上是否存在一点,使?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,三棱柱ABC—A1B1C1中,AA1⊥面ABC,BC⊥AC,BC=AC=2,AA1=3,D为AC的中点.
(Ⅰ)求证:AB1//面BDC1
  (Ⅱ)求二面角C1—BD—C的余弦值;
(Ⅲ)在侧棱AA­1上是否存在点P,使得
CP⊥面BDC1?并证明你的结论.


 
 

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
如图所示,在棱长为的正方体ABCD—A1B1C1D1中,E、F、H分别是棱BB1、CC1、DD1的中点。


 
(Ⅰ)求证:BH//平面A1EFD1

(Ⅱ)求直线AF与平面A1EFD1所成的角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱中, .
(1)求证: ;
(2)请在线段上确定一点P,使直线与平面所成角的正弦等于.

查看答案和解析>>

同步练习册答案