精英家教网 > 高中数学 > 题目详情
15.已知命题P:函数y=sin$\frac{π}{2}$x在x=a处取到最大值;命题q:直线x-y+2=0与圆(x-3)2+(y-a)2=8相切;则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 根据三角函数的图象和性质,可得命题p:a=1+4k,k∈Z;根据直线与圆的位置关系,可得命题q:a=1,或a=9,进而根据充要条件的定义,可得答案.

解答 解:当$\frac{π}{2}$x=$\frac{π}{2}$+2kπ,k∈Z,即x=1+4k,k∈Z时,函数取到最大值;
故命题p:a=1+4k,k∈Z;
若直线x-y+2=0与圆(x-3)2+(y-a)2=8相切,
则$\frac{|3-a+2|}{\sqrt{2}}$=2$\sqrt{2}$,
解得:a=1,或a=9,
即命题q:a=1,或a=9,
故p是q的必要不充分条件,
故选:B

点评 本题考查的知识点是充要条件的定义,函数的最值及其几何意义,直线与圆的位置关系,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.不等式(x+1)(x-2)>0的解集为(  )
A.{x|x<-1或x>2}B.{x|x<-2或x>1}C.{x|-2<x<1}D.{x|-1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.近年来我国电子商务行业迎来发展的新机遇.2016年双十一期间,某购物平台的销售业绩高达516亿人民币,与此同时,相关管理部门推出了针对电商的商品和服务的评价体系现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75.其中对商品和服务都做出好评的交易为80次.
(1)先完成关于商品和服务评价的2×2列联表,再判断能否在犯错误的概率不超过0.001的前提下,以为商品好评与服务好评有关?
(2)若用分层抽样的方法从“对商品好评”和“商品不满意”中抽出5次交易,再从这5次交易中选出2次,求恰有一次为“商品好评”的概率.
附临界值表:
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.89710.828
k2的观测值:$k=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
关于商品和服务评价的2×2列联表:
对服务好评对服务不满意合计
对商品好评a=80b=40120
对商品不满意c=70d=1080

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.有下列四个命题:
①已知A,B,C,D是空间任意四点,则$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CD}$+$\overrightarrow{DA}$=0;
②若两个非零向量$\overrightarrow{AB}$与$\overrightarrow{CD}$满足$\overrightarrow{AB}$+$\overrightarrow{CD}$=$\overrightarrow{0}$,则$\overrightarrow{AB}$‖$\overrightarrow{CD}$;
③分别表示空间向量的有向线段所在的直线是异面直线,则这两个向量不是共面向量;
④对于空间的任意一点O和不共线的三点A,B,C,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$(x,y,z∈R),则P,A,B,C四点共面.
其中正确命题有②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设△ABC的内角A、B、C的对边分别为a、b、c,且A=60°,b=1,△ABC的面积S△ABC=$\frac{{\sqrt{3}}}{2}$,则$\frac{a+b+c}{sinA+sinB+sinC}$=(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}中,${a_1}=\frac{3}{4}$,${a_n}=1-\frac{1}{{{a_{n-1}}}}$(n≥2),则a2016=(  )
A.$\frac{3}{4}$B.$-\frac{1}{3}$C.$-\frac{3}{4}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知二次函数y=ax2+bx+c=0(a≠0)的图象如图所示,记p=|a-b+c|+|2a+b|,q=|a+b+c|+|2a-b|,则(  )
A.p>qB.p=q
C.p<qD.p,q大小关系不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合A={x|x2+3x-10<0},B={x|x2-2x-3≥0},全集为R,求A∩B和A∪(∁RB)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知平面α∩平面β=直线l,点A,C∈α,点B,D∈β,且A,B,C,D∉l,点M,N分别是线段AB,CD的中点.(  )
A.当|CD|=2|AB|时,M,N不可能重合
B.M,N可能重合,但此时直线AC与l不可能相交
C.当直线AB,CD相交,且AC∥l时,BD可与l相交
D.当直线AB,CD异面时,MN可能与l平行

查看答案和解析>>

同步练习册答案