精英家教网 > 高中数学 > 题目详情
(本小题满分13分)已知椭圆的两焦点和短轴的两端点正好是一正方形的四个顶点,且焦点到椭圆上一点的最近距离为.

(1)求椭圆的标准方程;
(2)设P是椭圆上任一点,AB 是圆C:
的任一条直径,求
最大值.
(1);(2)8
(1)由题意知
故椭圆的标准方程为。………………………………………(5分)
(2)=
从而只需求出的最大值     ……………………………………………(9分)
设P,则有,即有
又C(0,2),所以
,所以时,最大值为9,
的最大值为8. ………………………………………………(13分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知圆为圆上一动点,点上,点上,且满足的轨迹为曲线
(1)求曲线的方程;
(2)若直线与(1)中所求点的轨迹交于不同两点是坐
标原点,且,求△的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)平面直角坐标系xOy中,已知⊙M经过点F1(0,-c),F2(0,c),Ac,0)三点,其中c>0.
(1)求⊙M的标准方程(用含的式子表示);
(2)已知椭圆(其中)的左、右顶点分别为DB
Mx轴的两个交点分别为AC,且A点在B点右侧,C点在D点右侧.
①求椭圆离心率的取值范围;
②若ABMOCDO为坐标原点)依次均匀分布在x轴上,问直线MF1与直线DF2的交点是否在一条定直线上?若是,请求出这条定直线的方程;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线与抛物线相交于A、B两点,O为原点,若
=                                                          (     )
A.               B.1                C.2               D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆C: +=1(a>b>0)的离心率e=,且椭圆经过点N(2,-3).
(1)求椭圆C的方程;
(2)求椭圆以M(-1,2)为中点的弦所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线形拱桥,当顶点距离水面2米时,测量水面宽为4米,当水面下降1米后,水面的宽度是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的焦距为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

己知双曲线)的焦点在轴上,一条渐近线方程是,其中数列是以4为首项的正项数列,则数列通项公式是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义:平面内两条相交但不垂直的数轴构成的坐标系(两条数轴的原点重合且单位长度相同)称为平面斜坐标系;在平面斜坐标系xOy中,若 (其中分别是斜坐标系x轴、y轴正方向上的单位向量,x、y∈R,O为坐标系原点),则有序数对(x,y)称为点P的斜坐标.在平面斜坐标系xOy中,若=120°,点M的斜坐标为(1,2),则以点M为圆心,1为半径的圆在斜坐标系xOy中的方程是                       (    )
A.B.
C.D.

查看答案和解析>>

同步练习册答案