【题目】已知函数f(x)=xex﹣ae2x(a∈R)恰有两个极值点x1 , x2(x1<x2),则实数a的取值范围为 .
【答案】(0, )
【解析】解:函数f(x)=xex﹣ae2x可得f′(x)=ex(x+1﹣2aex),要使f(x)恰有2个极值点,
则方程x+1﹣2aex=0有2个不相等的实数根,
令g(x)=x+1﹣2aex , g′(x)=1﹣2aex;
(i)a≤0时,g′(x)>0,g(x)在R递增,不合题意,舍,
(ii)a>0时,令g′(x)=0,解得:x=ln ,
当x<ln 时,g′(x)>0,g(x)在(﹣∞,ln )递增,且x→﹣∞时,g(x)<0,
x>ln 时,g′(x)<0,g(x)在(ln ,+∞)递减,且x→+∞时,g(x)<0,
∴g(x)max=g(ln )=ln +1﹣2a =ln >0,
∴ >1,即0<a< ;
所以答案是:(0, ).
【考点精析】解答此题的关键在于理解函数的极值与导数的相关知识,掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.
科目:高中数学 来源: 题型:
【题目】
下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图
(1)由折线图看出,可用线性回归模型拟合与的关系,请建立关于的回归方程(系数精确到0.01);
(2)预测2018年我国生活垃圾无害化处理量.
附注:
参考公式:设具有线性相关关系的两个变量的一组观察值为,
则回归直线方程的系数为:
, .
参考数据: , .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中,正确的命题有__________.
①回归直线恒过样本点的中心,且至少过一个样本点;
②将一组数据的每个数据都加一个相同的常数后,方差不变;
③用相关指数来刻面回归效果;表示预报变量对解释变量变化的贡献率,越接近于1,说明模型的拟合效果越好;
④若分类变量和的随机变量的观测值越大,则“与相关”的可信程度越小;
⑤.对于自变量和因变量,当取值一定时, 的取值具有一定的随机性, , 间的这种非确定关系叫做函数关系;
⑥.残差图中残差点比较均匀的地落在水平的带状区域中,说明选用的模型比较合适;
⑦.两个模型中残差平方和越小的模型拟合的效果越好.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的方程为y=3+ .
(1)写出曲线C的一个参数方程;
(2)在曲线C上取一点P,过点P作x轴,y轴的垂线,垂足分别为A,B,求矩形OAPB的周长的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,在点处的切线方程为
(1)求函数的解析式;
(2)若过点),可作曲线的三条切线,求实数的取值范围;
(3)若对于区间上任意两个自变量的值,都有,求实数的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中,AB⊥平面BB1C1C,∠BCC1= ,AB=BB1=2,BC=1,D为CC1中点.
(1)求证:DB1⊥平面ABD;
(2)求二面角A﹣B1D﹣A1的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知抛物线,过点任作一直线与相交于两点,过点作轴的平行线与直线相交于点为坐标原点).
(1)证明: 动点在定直线上;
(2)作的任意一条切线 (不含轴), 与直线相交于点与(1)中的定直线相交于点.
证明: 为定值, 并求此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线 : ( )的焦点为 ,点 在抛物线 上,且 ,直线 与抛物线 交于 , 两点, 为坐标原点.
(1)求抛物线 的方程;
(2)求 的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学从参加环保知识竟赛的学生中抽取了部分学生的成绩进行分析,不过作好的茎叶图和频率分布直方图因故均受到不同程度的损坏,其可见部分信息如图所示,据此解答下列问题:
(1)求抽取学生成绩的中位数,并修复频率分布直方图;
(2)根据修复的频率分布直方图估计该中学此次环保知识竞赛的平均成绩。(以各组的区间中点值代表该组的各个值)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com