精英家教网 > 高中数学 > 题目详情
如图所示,直三棱柱ABCA1B1C1中,D、E分别是AB、BB1的中点,AA1=AC=CB=AB.

(1)证明:BC1∥平面A1CD;
(2)求二面角DA1CE的正弦值..
(1)见解析(2)
(1)证明:连结AC1交A1C于点F,则F为AC1中点.又D是AB中点,连结DF,则BC1∥DF.
因为DF?平面A1CD,BC1平面A1CD,所以BC1∥平面A1CD.
(2)由AC=CB=AB得AC⊥BC.以C为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系Cxyz.

设CA=2,则D(1,1,0),E(0,2,1),A1(2,0,2),=(1,1,0),=(0,2,1),=(2,0,2).
n=(x1,y1,z1)是平面A1CD的法向量,则
可取n=(1,-1,-1).
同理,设m为平面A1CE的法向量,则可取m=(2,1,-2).
从而cos〈nm〉=,故sin〈nm〉=.即二面角D-A1C-E的正弦值为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,,M是线段AE上的动点.
(1)试确定点M的位置,使AC∥平面DMF,并说明理由;
(2)在(1)的条件下,求平面DMF与平面ABCD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱所有棱长都是2,D棱AC的中点,E是棱的中点,AE交于点H.

(1)求证:平面
(2)求二面角的余弦值;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1BC=2,又PB⊥平面ABCD,且PB=1,点E在棱PD上,且DE=2PE.

(1)求证:BE⊥平面PCD;
(2)求二面角A一PD-B的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图甲,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.

(1)求证:DC⊥平面ABC;
(2)求BF与平面ABC所成角的正弦值;
(3)求二面角B-EF-A的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如右图,在棱长为a的正方体ABCDA1B1C1D1中,G为△BC1D的重心,

(1)试证:A1、G、C三点共线;
(2)试证:A1C⊥平面BC1D;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,A,D分别是矩形A1BCD1上的点,AB=2AA1=2AD=2,DC=2DD1,把四边形A1ADD1沿AD折叠,使其与平面ABCD垂直,如图2所示,连接A1B,D1C得几何体ABA1­DCD1.

(1)当点E在棱AB上移动时,证明:D1E⊥A1D;
(2)在棱AB上是否存在点E,使二面角D1­EC­D的平面角为?若存在,求出AE的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知空间四边形OABC,点M、N分别是OA、BC的中点,且a,b,c,用abc表示向量=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正四棱锥S-ABCD中,O为顶点在底面上的射影,P为侧棱SD的中点,且SO=OD,则直线BC与平面PAC所成的角等于   .

查看答案和解析>>

同步练习册答案