A. | 8 | B. | 10 | C. | 12 | D. | 16 |
分析 推导出f(x)是以4为周期的周期函数,由当-1≤x<0时,f(x)=-log${\;}_{\frac{1}{2}}$(-x),作出f(x)在(0,6)内的图象,数形结合能求出方程f(x)-$\frac{1}{2}$=0在(0,6)内的零点之和.
解答 解:∵定义在R上的奇函数y=f(x)的图象关于直线x=1对称,
∴f(x)=f(2-x)=-f(-x),即f(x)=-f(x+2)=f(x+4),
∴f(x)是以4为周期的周期函数,
∵当-1≤x<0时,f(x)=-log${\;}_{\frac{1}{2}}$(-x),
∴f(x)在(0,6)内的图象如右图:
∴结合图象得:
方程f(x)-$\frac{1}{2}$=0在(0,6)内的零点之和为:
x1+x2+x3+x4=2+10=12.
故选:C.
点评 本题考查函数在给定区间内的零点之和的求法,是中档题,解题时要认真审题,注意函数性质和数形结合思想的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,16] | B. | (-∞,16) | C. | (16,+∞) | D. | [16,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com