精英家教网 > 高中数学 > 题目详情
7.变量x,y 满足$\left\{\begin{array}{l}y≥-1\\ x-y≥2\\ 3x+y≤14\end{array}\right.$,若使z=ax+y取得最大值的最优解有无穷多个,实数a的集合是(  )
A.{-3,0 }B.{ 3,-1}C.{ 0,1 }D.{-3,0,1 }

分析 作出不等式组对应的平面区域,利用z=ax+y取得最大值的最优解有无穷多个,得到目标函数的对应的直线和不等式对应的边界的直线的斜率相同,解方程即可得到结论.

解答 解:不等式对应的平面区域如图:
由z=ax+y得y=-ax+z,
若a=0时,直线y=-ax+z=z,
此时取得最大值的最优解只有一个,不满足条件.
若-a>0,则直线y=-ax+z截距取得最大值时,z取的最大值,此时满足直线y=-ax+z与y=x-2平行,
此时-a=1,解得a=-1.
若-a<0,则直线y=-ax+z截距取得最大值时,z取的最大值,此时满足直线y=-ax+z与y=-3x+14平行,
此时-a=-3,解得a=3.
综上满足条件的a=3或a=-1,
故实数a的取值集合是{3,-1},
故选:B.

点评 本题主要考查线性规划的应用,利用z的几何意义,结合z=ax+y取得最大值的最优解有无穷多个,利用结合数形结合是解决本题的根据.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.计算:cos70°cos335°+sin110°sin25°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设a=log9$\sqrt{3}$,b=log3$\sqrt{\frac{8}{5}}$,c=$\frac{1}{6}$log23,则a,b,c之间的大小关系是(  )
A.c>a>bB.a>c>bC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知A={x∈R|x2-2(p+2)x+p2=0},且A∩{x|x>0}=∅,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设a>b>1,c<0,给出下列三个结论:①$\frac{c}{a}$>$\frac{c}{b}$; ②$\frac{1}{a+b}>\frac{1}{ab}$;③logb(a-c)<loga(b-c);④ac<bc;其中正确结论的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a为大于1的常数,函数f(x)=$\left\{\begin{array}{l}{log_a}x,x>0\\{a^x},x≤0\end{array}$,若关于x的方程f2(x)-bf(x)=0恰有三个不同的实数解,则实数b的取值范围是(  )
A.0<b≤1B.0<b<1C.0≤b≤1D.b>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设a=40.7,b=0.30.5,c=log23,则a,b,c的大小关系是(  )
A.b<a<cB.b<c<aC.a<b<cD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合A:{x,y},B:{2x,2x2},且A=B,求集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求下列函数的值域:
(1)y=ln(-x2+2x);
(2)f(x)=log${\;}_{\frac{1}{3}}$(x2-4x+7)

查看答案和解析>>

同步练习册答案