精英家教网 > 高中数学 > 题目详情
4、已知x1是方程x+lgx=3的根,x2是方程x+10x=3的根,则x1+x2值为
3
分析:第一个方程:lgx=3-x.第二个方程,10x=3-x,lg(3-x)=x.注意第二个方程,如果做变量代换y=3-x,则lgy=3-y,其实是与第一个方程一样的.那么,如果x1,x2是两个方程的解,则必有x1=3-x2,也就是说,x1+x2=3.
解答:解:∵x+lgx=3,∴lgx=3-x.
∵x+10x=3,∴10x=3-x,
∴lg(3-x)=x.如果做变量代换y=3-x,则lgy=3-y,
∵x1是方程x+lgx=3的根,x2是方程x+10x=3的根,
∴x1=3-x2,∴x1+x2=3.
答案:3.
点评:本题考查对数函数的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax+4+2lnx
(I)当a=5时,求f(x)的单调递减函数;
(Ⅱ)设直线l是曲线y=f(x)的切线,若l的斜率存在最小值-2,求a的值,并求取得最小斜率时切线l的方程;
(Ⅲ)若f(x)分别在x1、x2(x1≠x2)处取得极值,求证:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+bsinx,当x=
π
3
时,f(x)取得极小值
π
3
-
3

(1)求a,b的值;
(2)设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
试证明:直线l:y=x+2是曲线S:y=ax+bsinx的“上夹线”.
(3)记h(x)=
1
8
[5x-f(x)]
,设x1是方程h(x)-x=0的实数根,若对于h(x)定义域中任意的x2、x3,当|x2-x1|<1,且|x3-x1|<1时,问是否存在一个最小的正整数M,使得|h(x3)-h(x2)|≤M恒成立,若存在请求出M的值;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax+bsinx,当数学公式时,f(x)取得极小值数学公式
(1)求a,b的值;
(2)设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
试证明:直线l:y=x+2是曲线S:y=ax+bsinx的“上夹线”.
(3)记数学公式,设x1是方程h(x)-x=0的实数根,若对于h(x)定义域中任意的x2、x3,当|x2-x1|<1,且|x3-x1|<1时,问是否存在一个最小的正整数M,使得|h(x3)-h(x2)|≤M恒成立,若存在请求出M的值;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2-ax+4+2lnx
(I)当a=5时,求f(x)的单调递减函数;
(Ⅱ)设直线l是曲线y=f(x)的切线,若l的斜率存在最小值-2,求a的值,并求取得最小斜率时切线l的方程;
(Ⅲ)若f(x)分别在x1、x2(x1≠x2)处取得极值,求证:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中数学 来源:《圆锥曲线》2012-2013学年广东省十三大市高三(上)期末数学试卷汇编(理科)(解析版) 题型:解答题

如图,已知点M(x,y)是椭圆C:=1上的动点,以M为切点的切线l与直线y=2相交于点P.
(1)过点M且l与垂直的直线为l1,求l1与y轴交点纵坐标的取值范围;
(2)在y轴上是否存在定点T,使得以PM为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,说明理由.
(参考定理:若点Q(x1,y1)在椭圆,则以Q为切点的椭圆的切线方程是:

查看答案和解析>>

同步练习册答案