精英家教网 > 高中数学 > 题目详情
若不等式|a-1|≥x+y+z,对满足x2+y2+z2=1的一切实数x,y,z恒成立,则实数a的取值范围是
a
3
+1
或a≤-
3
+1
a
3
+1
或a≤-
3
+1
分析:不等式|a-1|≥x+y+z恒成立,只要|a-1|≥(x+y+z)max,利用基本不等式3=3(x2+y2+z2)≥(x+y+z)2求出x+y+z的最大值,再解关于a的绝对值不等式即可.
解答:解:∵x2+y2≥2xy
x2+z2≥2xz
y2+z2≥2yz
∴2(x2+y2+z2)≥2(xy+xz+yz)
∴3(x2+y2+z2)≥(x+y+z)2
∵x2+y2+z2=1,
∴(x+y+z)2≤3
∴-
3
≤x+y+z≤
3

∵|a-1|≥x+y+z恒成立
∴|a-1|≥(x+y+z)max
即|a-1|
3

∴a
3
+1
或a≤-
3
+1

故答案为:a
3
+1
或a≤-
3
+1
点评:本题主要考查了基本不等式求解最值的应用及函数的恒成立与最值的相互转化关系的应用
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)过点P(-3,0)且倾斜角为30°的直线l和曲线C:
x=s+
1
s
y=s-
1
s
(s为参数)相交于A,B两点,求线段AB的长.
(2)若不等式|a-1|≥x+2y+2z,对满足x2+y2+z2=1的一切实数x,y,z恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式|a-1|≥x+2y+2z,对满足x2+y2+z2=1的一切实数x、y、z恒成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分
(1)二阶矩阵M对应的变换将向量
1
-1
-2
1
分别变换成向量
3
-2
-2
1
,直线l在M的变换下所得到的直线l′的方程是2x-y-1=0,求直线l的方程.
(2)过点P(-3,0)且倾斜角为30°的直线l和曲线C:
x=s+
1
s
y=s-
1
s
(s为参数)相交于A,B两点,求线段AB的长.
(3)若不等式|a-1|≥x+2y+2z,对满足x2+y2+z2=1的一切实数x,y,z恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式|a-1|≥
3x+1
+
3y+1
+
3z+1
对满足x+y+z=1的一切正实数x,y,z恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案