精英家教网 > 高中数学 > 题目详情

某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线,在抛物线上任意画一个点,度量点的坐标,如图.

(Ⅰ)拖动点,发现当时,,试求抛物线的方程;

(Ⅱ)设抛物线的顶点为,焦点为,构造直线交抛物线于不同两点,构造直线分别交准线于两点,构造直线.经观察得:沿着抛物线,无论怎样拖动点,恒有.请你证明这一结论.

(Ⅲ)为进一步研究该抛物线的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点”改变为其它“定点”,其余条件不变,发现“不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“”成立?如果可以,请写出相应的正确命题;否则,说明理由.

 

【答案】

(Ⅰ)

(Ⅱ)设出直线方程,点的坐标,联立方程组证明,所以

(Ⅲ)设抛物线的顶点为,定点,过点的直线与抛物线相交于两点,直线分别交直线两点,则

【解析】

试题分析:解法一:(Ⅰ)把代入,得,          2分

所以,                                                                3分

因此,抛物线的方程.                                              4分

(Ⅱ)因为抛物线的焦点为,设

依题意可设直线

,则 ①                      6分

又因为,所以

所以,                         7分

又因为                                   8分

,  ②

把①代入②,得,                                   10分

所以

又因为四点不共线,所以.                        11分

(Ⅲ)设抛物线的顶点为,定点,过点的直线与抛物线相交于两点,直线分别交直线两点,则 .                                                             14分

解法二:(Ⅰ)同解法一.

(Ⅱ)因为抛物线的焦点为,设,                5分

依题意,可设直线

所以                                                         7分

又因为

所以,                                            10分

所以,  

又因为四点不共线,所以.                          11分

(Ⅲ)同解法一.                                                            14分

解法三:(Ⅰ)同解法一.

(Ⅱ)因为抛物线的焦点为,设

依题意,设直线

,则,                         6分

又因为,所以

又因为,                9分

所以,所以平行于轴;

同理可证平行于轴;

又因为四点不共线,所以.                         11分

(Ⅲ)同解法一.                                                           14分

考点:本小题主要考查抛物线的标准方程、直线与圆锥曲线的位置关系.

点评:圆锥曲线问题在高考中每年必考,且一般出在压轴题的位置上,难度较低,主要考查推理论证能力、运算求解能力,考查化归与转化思想、分类与整合思想、数形结合思想等。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某同学用《几何画板》研究椭圆的性质:打开《几何画板》软件,绘制某椭圆C1
x2
a2
+
y2
b2
=1,在椭圆上任意画一个点S,度量点S的坐标(xs,ys),如图1.
(1)拖动点S,发现当xs=
2
时,ys=0;当xs=0时,ys=1,试求椭圆C1的方程;
(2)该同学知圆具有性质:若E为圆O:x2+y2=r2(r>0)的弦AB的中点,则直线AB的斜率kAB与直线OE的斜率kOE的乘积kAB•kOE为定值.该同学在椭圆上构造两个不同的点A、B,并构造直线AB,再构造AB的中点E,经观察得:沿着椭圆C1,无论怎样拖动点A、B,椭圆也具有此性质.类比圆的这个性质,请写出椭圆C1的类似性质,并加以证明;
(3)拖动点A、B的过程中,如图2发现当点A与点B在C1在第一象限中的同一点时,直线AB刚好为C1的切线l,若l分别与x轴和y轴的正半轴交于C,D两点,求三角形OCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线,在抛物线上任意画一个点,度量点的坐标,如图.

(Ⅰ)拖动点,发现当时,,试求抛物线的方程;

(Ⅱ)设抛物线的顶点为,焦点为,构造直线交抛物线于不同两点,构造直线分别交准线于两点,构造直线.经观察得:沿着抛物线,无论怎样拖动点,恒有.请你证明这一结论.

(Ⅲ)为进一步研究该抛物线的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点”改变为其它“定点”,其余条件不变,发现“不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“”成立?如果可以,请写出相应的正确命题;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线,在抛物线上任意画一个点,度量点的坐标,如图.

(Ⅰ)拖动点,发现当时,,试求抛物线的方程;

(Ⅱ)设抛物线的顶点为,焦点为,构造直线交抛物线于不同两点,构造直线分别交准线于两点,构造直线.经观察得:沿着抛物线,无论怎样拖动点,恒有.请你证明这一结论.

(Ⅲ)为进一步研究该抛物线的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点”改变为其它“定点”,其余条件不变,发现“不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“”成立?如果可以,请写出相应的正确命题;否则,说明理由.

查看答案和解析>>

同步练习册答案