精英家教网 > 高中数学 > 题目详情
17.(Ⅰ)已知a,b∈R+,求证:(a+b)(a2+b2)(a3+b3)≥8a3b3
(Ⅱ)已知a、b、c∈R+,且a+b+c=1.求证:$({\frac{1}{a}-1})({\frac{1}{b}-1})({\frac{1}{c}-1})≥8$.

分析 (Ⅰ)运用基本不等式,累乘即可得证;
(Ⅱ)由a、b、c∈R+,且a+b+c=1,将不等式的左边变形后,再由基本不等式,累乘即可得证.

解答 证明:(Ⅰ)a,b∈R+,a+b≥2$\sqrt{ab}$,
a2+b2≥2ab,a3+b3≥2$\sqrt{{a}^{3}{b}^{3}}$,
三式相乘可得,(a+b)(a2+b2)(a3+b3)≥8a3b3
当且仅当a=b取得等号;
(Ⅱ)a、b、c∈R+,且a+b+c=1,
可得$\frac{1}{a}$-1=$\frac{b+c}{a}$≥$\frac{2\sqrt{bc}}{a}$,$\frac{1}{b}$-1=$\frac{a+c}{b}$≥$\frac{2\sqrt{ac}}{b}$,
$\frac{1}{c}$-1=$\frac{a+b}{c}$≥$\frac{2\sqrt{ab}}{c}$,
相乘可得,$\frac{b+c}{a}$•$\frac{a+c}{b}$•$\frac{a+b}{c}$≥$\frac{2\sqrt{bc}}{a}$•$\frac{2\sqrt{ac}}{b}$•$\frac{2\sqrt{ab}}{c}$=8,
则有$({\frac{1}{a}-1})({\frac{1}{b}-1})({\frac{1}{c}-1})≥8$.

点评 本题考查不等式的证明,注意运用基本不等式和累乘法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知O为坐标原点,A(0,2),B(4,6),$\overrightarrow{OM}=λ\overrightarrow{OA}+μ\overrightarrow{AB}$.
(1)若λ=2,且$\overrightarrow{OM}⊥\overrightarrow{AB}$,求μ的值;
(2)若对任意实数μ,恒有A,B,M三点共线,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)是定义在R上的偶函数,且当x≥0时,$f(x)={(\frac{1}{2})^x}$.
(1)求f(-1)的值;    
(2)求函数f(x)的值域A;
(3)设$g(x)=\sqrt{-{x^2}+(a-1)x+a}(a>-1)$的定义域为集合B,若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知数列{an}中,a1=3,a2=6,an+2=an+1-an,则a2015=(  )
A.-6B.6C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.今年是我校成立111周年的一年,那么十进制的111化为二进制是(  )
A.1 101 101B.11 011 011C.1 101 111D.1 011 100

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=2|1+x|的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知约束条件$\left\{{\begin{array}{l}{x+2y≤10}\\{2x+y≥6}\\{y≥0}\end{array}}$.
(1)在如图网格线内建立坐标系,并画出可行域;
(2)求目标函数z=$\frac{2x+y+3}{x+1}$的最值并指出取得最值时的最优解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2x(x∈R),
(1)解不等式f(x)-f(2x)>16-9×2x
(2)若函数q(x)=f(x)-f(2x)-m在[-1,1]上有零点,求m的取值范围;
(3)若函数f(x)=g(x)+h(x),其中g(x)为奇函数,h(x)为偶函数,若不等式2ag(x)+h(2x)≥0对任意x∈[1,2]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知中心在坐标原点的椭圆E的长轴的一个端点是抛物线y2=4$\sqrt{5}$x的焦点,且椭圆E的离心率是$\frac{\sqrt{5}}{5}$
(1)求椭圆E的方程;
(2)过点C(-1,0)的动直线与椭圆E相交于A,B两点.若线段AB的中点的横坐标是-$\frac{1}{2}$,求直线AB的方程.

查看答案和解析>>

同步练习册答案