精英家教网 > 高中数学 > 题目详情

在共有2 013项的等差数列{an}中,有等式(a1+a3+…+a2 013)-(a2+a4+…+a2 012)=a1 007成立;类比上述性质,在共有2 011项的等比数列{bn}中,相应的有等式________成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在共有2 013项的等差数列{an}中,有等式(a1+a3+…+a2013)-(a2+a4+…+a2012)=a1007成立;类比上述性质,在共有2 013项的等比数列{bn}中,相应的有等式
b1b3b2013
b2b4b2012
=b1007
b1b3b2013
b2b4b2012
=b1007
成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

在共有2 013项的等差数列{an}中,有等式(a1+a3+…+a2013)-(a2+a4+…+a2012)=a1007成立;类比上述性质,在共有2 011项的等比数列{bn}中,相应的有等式
b1b3b5b2011
b2•b4•b6…b2010
=b1 006
b1b3b5b2011
b2•b4•b6…b2010
=b1 006
成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在共有2 013项的等差数列{an}中,有等式(a1+a3+…+a2013)-(a2+a4+…+a2012)=a1007成立;类比上述性质,在共有2 011项的等比数列{bn}中,相应的有等式________成立.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省盐城市阜宁中学高二(下)期中数学试卷(理科)(解析版) 题型:填空题

在共有2 013项的等差数列{an}中,有等式(a1+a3+…+a2013)-(a2+a4+…+a2012)=a1007成立;类比上述性质,在共有2 013项的等比数列{bn}中,相应的有等式    成立.

查看答案和解析>>

同步练习册答案