精英家教网 > 高中数学 > 题目详情

【题目】如图,已知椭圆 的离心率为,且过点

(I)求椭圆的标准方程;

(II)设点是椭圆上异于顶点的任意两点,直线的斜率分别为

①求的值;

②设点关于轴的对称点为,试求直线的斜率.

【答案】(I);(II)①8;②

【解析】

(Ⅰ) 根据条件列方程组解得 ,即得结果,(Ⅱ) ①先根据直线方程与椭圆方程解得,同理可得,再根据化简求值,②先用A,B坐标表示直线的斜率,再根据,利用①结论以及椭圆方程解得,最后代入得结果.

(1)由题意,所以,即

所以椭圆的方程为

又因为椭圆过点,所以,即

所以所求椭圆的标准方程为

(2)①设直线的方程为化简得

解得

因为,故

同理可得

所以

②由题意,点关于轴的对称点为的坐标为

又点是椭圆上异于顶点的任意两点,

所以

,即

设直线的斜率为,则

因为,即,故

所以

所以直线的斜率为为常数,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】 下列结论错误的是

A. 命题:“若,则”的逆否命题是“若,则

B. ”是“”的充分不必要条件

C. 命题:“ ”的否定是“

D. 若“”为假命题,则均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数,),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程是.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)已知直线与曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知矩形所在平面与半圆弧所在平面垂直,是半圆弧上异于的点.

1)证明:平面平面

2)若,当三棱锥的体积最大且二面角的平面角的大小为时,试确定的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,,分别为侧棱,的中点,则四面体的体积与四棱锥的体积之比为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别为△ABC三个内角A,B,C的对边,且acos C+asin C-b-c=0.

(1)求A;

(2)若AD为BC边上的中线,cos B=,AD=,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为M是椭圆C的上顶点,,F2是椭圆C的焦点,的周长是6.

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)过动点P(1,t)作直线交椭圆CAB两点,且|PA|=|PB|,过P作直线l,使l与直线AB垂直,证明:直线l恒过定点,并求此定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点Q是圆上的动点,点,若线段QN的垂直平分线MQ于点P.

(I)求动点P的轨迹E的方程

(II)若A是轨迹E的左顶点,过点D(-3,8)的直线l与轨迹E交于BC两点,求证:直线ABAC的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器。现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:

维修次数

0

1

2

3

台数

5

10

20

15

以这50台机器维修次数的频率代替1台机器维修次数发生的概率,记X表示这2台机器超过质保期后延保的两年内共需维修的次数。

(1)求X的分布列;

(2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算?

查看答案和解析>>

同步练习册答案