精英家教网 > 高中数学 > 题目详情
20.如图,ABCD是边长为2的正方形,ED⊥平面ABCD,ED=1,EF∥BD.
(1)设EF=λBD,是否存在实数λ,使BF∥平面ACE;
(2)求证:平面EAC⊥平面BDEF
(3)当EF=$\frac{1}{2}$BD时,求几何体ABCDEF的体积.

分析 (1)存在$λ=\frac{1}{2}$.证明四边形EFBO是平行四边形,可得BF∥EO,使BF∥平面ACE;
(2)利用面面垂直的判定定理证明平面EAC⊥平面BDEF;
(3)几何体的体积VABCDEF=2VA-BDEF=2×$\frac{1}{3}$SBDEF•AO

解答 (1)解:存在$λ=\frac{1}{2}$.证明:记AC与BD的交点为O,则DO=BO=$\frac{1}{2}$BD,连接EO,
∵EF∥BD,当$λ=\frac{1}{2}$时,即EF=$\frac{1}{2}$BD,
∴EF∥BO且EF=BO,则四边形EFBO是平行四边形,
∴BF∥EO,
又∵EO?面ACE,BF?面ACE,
∴BF∥平面ACE;             …4’
(2)证明:∵ED⊥平面ABCD,AC?平面ABCD,∴ED⊥AC.
∵ABCD为正方形,∴BD⊥AC,
又ED∩BD=D,∴AC⊥平面BDEF,
又AC?平面EAC,∴平面EAC⊥平面BDEF;…8’
(3)解:∵ED⊥平面ABCD,∴ED⊥BD,
又∵EF∥BD且EF=$\frac{1}{2}$BD,∴BDEF是直角梯形,
又∵ABCD是边长为2的正方形,BD=2$\sqrt{2}$,EF=$\sqrt{2}$,
∴梯形BDEF的面积为$\frac{(\sqrt{2}+2\sqrt{2})×1}{2}$=$\frac{3\sqrt{2}}{2}$,
由(1)知AC⊥平面BDEF,
∴几何体的体积VABCDEF=2VA-BDEF=2×$\frac{1}{3}$SBDEF•AO=2×$\frac{1}{3}×\frac{3\sqrt{2}}{2}×\sqrt{2}$=2.…13’

点评 本题主要考查空间直线与平面,面面垂直的判定以及空间几何体的体积,要求熟练掌握相应的判定定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.$\overrightarrow{OA}$-$\overrightarrow{OD}$+$\overrightarrow{AD}$=$\overrightarrow{0}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,在长方体ABCD-A1B1C1D1中,对角线B1D与平面A1BC1交于E点.记四棱锥E-A1B1C1D1的体积为V1,长方体ABCD-A1B1C1D1的体积为V2,则$\frac{{V}_{1}}{{V}_{2}}$的值是$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在三棱锥V-ABC中,VC⊥平面ACB,∠ACB=90°,VC=AC=BC=1,则C到平面AVB的距离是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图(甲),等腰直角三角形的底边AB=4,点D在线段AC上,DE⊥AB于点E,现将△ADE沿DE折起到△PDE的位置(如图(乙))
(Ⅰ)求证:PB⊥DE;
(Ⅱ)若PE⊥BE,PD=$\sqrt{2}$,求四棱锥P-DEBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=sinxcosx+sinx+cosx的值域是[-1,$\frac{1}{2}$+$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.△ABC中,角A,B,C所对应的边分别为b,b,c,若$\frac{a-c}{b-c}$=$\frac{sinB}{sinA+sinC}$.
(1)求角A的大小;
(2)若△ABC的面积为S,求$\frac{S}{\overrightarrow{AB}•\overrightarrow{AC}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=cosxsin(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$-1(x∈R).
(1)求f(x)的最小正周期;
(2)求f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值和最小值,并分别写出相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的图象如图所示,则cosφ=-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案