精英家教网 > 高中数学 > 题目详情

已知椭圆的离心率为,短轴端点分别为.
(1)求椭圆的标准方程;
(2)若,是椭圆上关于轴对称的两个不同点,直线轴交于点,判断以线段为直径的圆是否过点,并说明理由.

(1)椭圆的标准方程为;(2)点不在以线段为直径的圆上.

解析试题分析:(1)求椭圆的标准方程,已知椭圆的离心率为,短轴端点分别为,可设椭圆方程为,由,可得,从而得椭圆的标准方程;(2)由于,是椭圆上关于轴对称的两个不同点,可设,若点在以线段为直径的圆上,则,即,即,因此可写出直线的方程为,令,得,写出向量的坐标,看是否等于0,即可判断出.
(1)由已知可设椭圆的方程为:             1分
,可得,                              3分
解得,                           4分
所以椭圆的标准方程为.                           5分
(2)法一:设                              6分
因为
所以直线的方程为,                   7分
,得,所以.                         8分
所以                          9分
所以,                     10分
又因为,代入得                11分
因为,所以.                12分
所以,                              13分
所以点不在以线段

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知点是椭圆上任一点,点到直线的距离为,到点的距离为,且.直线与椭圆交于不同两点(都在轴上方),且
(1)求椭圆的方程;
(2)当为椭圆与轴正半轴的交点时,求直线方程;
(3)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆C1=1(a>b>0)的左、右焦点分别为为恰是抛物线C2的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
(1)求C1的方程;
(2)平面上的点N满足,直线l∥MN,且与C1交于A,B两点,若,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的焦点为,点是抛物线上的一点,且其纵坐标为4,
(1)求抛物线的方程;
(2) 设点是抛物线上的两点,的角平分线与轴垂直,求的面积最大时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在轴上,椭圆上的点到焦点的最小距离为,离心率.
(1)求椭圆的方程;
(2)若直线两点,点,问是否存在,使?若存在求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线;设为曲线上的一个不在轴上的动点,为坐标原点,过点的平行线交曲线两个不同的点.
(1)求曲线的方程;
(2)试探究的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;
(3)记的面积为的面积为,令,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,椭圆的离心率为,过椭圆右焦点作两条互相垂直的弦.当直线斜率为0时,

(1)求椭圆的方程;
(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆)的右焦点为,且椭圆过点
(1)求椭圆的方程;
(2)设斜率为的直线与椭圆交于不同两点,以线段为底边作等腰三角形,其中顶点的坐标为,求△的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,设P是圆上的动点,点D是P在轴上投影,M为PD上一点,且

(1)当P在圆上运动时,求点M的轨迹C的方程;
(2)求过点(3,0)且斜率为的直线被C所截线段的长度.

查看答案和解析>>

同步练习册答案