精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点(2,0),且离心率为
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点N(
2
,0)且斜率为
6
3
的直线l与椭圆C交于A,B两点,求证:
OA
OB
=0.
(Ⅰ)由题意可知,
a=2
c
a
=
3
2
a2=b2+c2
,解得
a=1,b=1
c=
3

∴椭圆的方程为
x2
4
+y2=1

(Ⅱ)设A(x1,y1),B(x2,y2),
由题意可得直线l的方程为:y=
6
3
(x-
2
)

l联立
y=
6
3
(x-
2
)
x2
4
+y2=1
消去y得:11x2-16
2
x+4=0

x1+x2=
16
2
11
,x1x2=
4
11

OA
OB
=x1x2+y1y2=x1x2+
2
3
(x1-
2
)(x2-
2
)
=
5
3
x1x2
-
2
2
3
(x1+x2)
+
4
3
=
20
33
-
64
33
+
4
3
=0.
OA
OB
=0
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线上一点到其焦点的距离为
(I)求的值;
(II)设抛物线上一点的横坐标为,过的直线交于另一点,交轴于点,过点的垂线交于另一点.若的切线,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:y2=4x,过点A(x0,0)(其中x0为常数,且x0>0)作直线l交抛物线于P,Q(点P在第一象限);
(1)设点Q关于x轴的对称点为D,直线DP交x轴于点B,求证:B为定点;
(2)若x0=1,M1,M2,M3为抛物线C上的三点,且△M1M2M3的重心为A,求线段M2M3所在直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面直角坐标系xoy中的一个椭圆,它的中心在原点,左焦点为F(-
3
,0)
,右顶点为D(2,0),设点A(1,
1
2
).
(1)求该椭圆的标准方程;
(2)若P是椭圆上的动点,求线段PA的中点M的轨迹方程;
(3)过原点O的直线交椭圆于B,C两点,求△ABC面积的最大值,并求此时直线BC的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心为坐标原点,离心率为
2
2
,直线?与椭圆C相切于M点,F1、F2为椭圆的左右焦点,且|MF1|+|MF2|=2
2

(1)求椭圆C的标准方程;
(2)若直线m过F1点,且与椭圆相交于A、B两点,|AF2|+|BF2|=
8
2
3
,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若动圆过定点A(-3,0)且和定圆(x-3)2+y2=4外切,则动圆圆心P的轨迹为(  )
A.双曲线B.椭圆C.抛物线D.双曲线一支

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点F(1,0),直线L:x=-1,P为平面上的动点,过点P作直线L的垂线,垂足为Q,且
QP
QF
=
FP
FQ

(1)求点P的轨迹C的方程;
(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有
FA
FB
<0
?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,双曲线
x2
a2
-
y2
b2
=1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则:
(Ⅰ)双曲线的离心率e=______;
(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值
S1
S2
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动点A在直线l:x=1上,点C的坐标为(-1,0),经过点A垂直于直线l的直线,交线段AC的垂直平分线于点P.求点P的轨迹.

查看答案和解析>>

同步练习册答案