精英家教网 > 高中数学 > 题目详情
如图,直三棱柱ABC-A1B1C1中,AB⊥BC,E为棱CC1的中点,已知AB=
2
,BB1=2,BC=1.
(1)证明:BE是异面直线AB与EB1的公垂线;
(2)求二面角A-EB1-A1的大小;
(3)求点A1到面AEB1的距离.
(1)证明:∵AB⊥BC,AB⊥BB1,∴AB⊥面BC1,∴AB⊥BE
∵BE=B1E=
2
,BB1=2,∴∠BEB1=90°,∴BE⊥EB1
BE是异面直线AB与EB1的公垂
(2)∵AB⊥面BC1,BE⊥EB1,∴AE⊥EB1
∴∠AEB1为二面角A-EB1-A1的平面角
∵AB=
2
,BE=
2
,∴∠AEB=45°
∵面A1B1E⊥面BCB1C1,∴二面角A-EB1-A1为45°
(3)设点A1到面AEB1的距离为h,
由上证及题设条件知S△AEB1=
1
2
•AE•EB1=
2

SA1B1A=
1
2
A1B1•AA1=
2
,点E到面A1B1A的距离是1
VA1-AEB1=VE-A1B1A
1
3
×
2
×h=
1
3
×
2
×1
∴h=1
即点A1到面AEB1的距离.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知正方形ABCD沿其对角线AC将△ADC折起,设AD与平面ABC所成的角为β,当β取最大值时,二面角B-AC-D的大小为(  )
A.120°B.90°C.60°D.45°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠C=90°,侧棱与底面所成的角为α(0°<α<90°),点B1在底面上的射影D落在BC上.
(1)求证:AC⊥平面BB1C1C;
(2)当α为何值时,AB1⊥BC1,且使点D恰为BC中点?
(3)(理科做)当α=arccos
1
3
,且AC=BC=AA1时,求二面角C1-AB-C的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,梯形ABCD中,ADBC,∠ABC=
π
2
,AB=a,AD=3a,∠ADC=arcsin
5
5
,PA⊥面ABCD,PA=a.求:
(1)二面角P-CD-A的大小(用反三角函数表示);
(2)点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在三棱锥P-ABC中,D、E分别是BC、AB的中点,PA⊥平面ABC,∠BAC=90°,AB≠AC,AC>AD,PC与DE所成的角为α,PD与平面ABC所成的角为β,二面角P-BC-A的平面角为γ,则α,β,γ的大小关系是(  )
A.α<β<γB.α<γ<βC.β<α<γD.γ<β<α

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,矩形ABCD中,AB=a,AD=b,过点D作DE⊥AC于E,交直线AB于F.现将△ACD沿对角线AC折起到△PAC的位置,使二面角P-AC-B的大小为60°.过P作PH⊥EF于H.
(I)求证:PH⊥平面ABC;
(Ⅱ)若a=
2
b
,求直线DP与平面PBC所成角的大小;
(Ⅲ)若a+b=2,求四面体P-ABC体积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=
2
2
AB.
(Ⅰ)证明:BC1平面A1CD
(Ⅱ)求二面角D-A1C-E的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是一个平面,则下列命题不正确的是(    )
A.若,则B.若,则
C.若,则D.若,,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间四边形ABCD中,E、F分别为AB、AD上的点,且AE∶EB=AF∶FD=1∶4,又H、G分别为BC、CD的中点,则(  )
A.BD∥平面EFG,且四边形EFGH是平行四边形
B.EF∥平面BCD,且四边形EFGH是梯形
C.HG∥平面ABD,且四边形EFGH是平行四边形
D.EH∥平面ADC,且四边形EFGH是梯形

查看答案和解析>>

同步练习册答案