精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线的右顶点为A,以A为圆心,b为半径做圆,圆A与双曲线C的一条渐近线相交于MN两点,若为坐标原点),则双曲线C的离心率为___________.

【答案】

【解析】

利用已知条件,转化求解A到渐近线的距离,推出ac的关系,然后求解双曲线的离心率即可

解:双曲线C1a0b0)的右顶点为Aa0),

A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于MN两点.

则点A到渐近线bx-ay0的距离为AB

rb

BN

OB5BN

OAa

a2

a2c225b4+a2b2

a2c2b2)=25b4

a25b25c25a2

6a25c2

ac

e

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x3+ax29x+1aR),当x≠1时,曲线yfx)在点(x0fx0)和点(2x0f2x0))处的切线总是平行,现过点(﹣2aa2)作曲线yfx)的切线,则可作切线的条数为(  

A..3B..2C.1D..0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为提高课堂教学效果,最近立项了市级课题《高效课堂教学模式及其运用》,其中王老师是该课题的主研人之一,为获得第一手数据,她分别在甲、乙两个平行班采用传统教学高效课堂两种不同的教学模式进行教学实验.为了解教改实效,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出如图所示的茎叶图,成绩大于70分为成绩优良”.

1)由以上统计数据填写下面列联表,并判断能否在犯错误的概率不超过的前提下认为成绩优良与教学方式有关

甲班

乙班

总计

成绩优良

成绩不优良

总计

2)从甲、乙两班40个样本中,成绩在60分以下(不含60分)的学生中任意选取2人,记来自甲班的人数为,求的分布列与数学期望.

附:(其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知个实数若有穷数列由数列的项重新排列而成,且下列条件同时成立:① 个数两两不同;②当时,都成立,则称的一个友数列.

(1)若写出的全部“友数列

(2)已知是通项公式为的数列的一个“友数列,且(用表示);

(3)设求所有使得通项公式为的数列不能成为任何数列的“友数列”的正实数的个数(用表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】纹样是中国艺术宝库的瑰宝,火纹是常见的一种传统纹样,为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷2000个点,己知恰有800个点落在阴影部分,据此可估计阴影部分的面积是

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求的极值;

2)若时,的单调性相同,求的取值范围;

3)当时,函数有最小值,记的最小值为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:

1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;

2)求频率分布直方图中的ab的值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,,且,点M在棱上,点NBC的中点,且满足.

1)证明:平面

2)若M的中点,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)

(1)应收集多少位女生样本数据?

(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.

(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为该校学生的每周平均体育运动时间与性别有关.

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

同步练习册答案