精英家教网 > 高中数学 > 题目详情
17.在四边形ABCD中,若$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{AD}$,且|$\overrightarrow{AB}$|=|$\overrightarrow{AD}$|,则四边形ABCD的形状是菱形.

分析 由$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{AD}$得四边形ABCD是平行四边形,由|$\overrightarrow{AB}$|=|$\overrightarrow{AD}$|可知该平行四边形临边相等,故该四边形为菱形.

解答 解:∵$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{AD}$,
∴四边形ABCD是平行四边形,
∵|$\overrightarrow{AB}$|=|$\overrightarrow{AD}$|,即AB=AD
∴平行四边形ABCD是菱形.
故答案为 菱形.

点评 本题考查了平面向量的平行四边形法则,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=|x+1|+|2x-1|的最小值为a.
(1)求a的值;
(2)已知m,n>0,m+n=a,求$\frac{1}{m}+\frac{4}{n}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{3}$ax3+$\frac{1}{2}$bx2+x,g(x)=$\frac{1}{3}$a2x3+$\frac{1}{2}$bx2+x,其中a>0,若函数g(x)存在两个极值点x1,x2,且点x1<x2
(1)求证:函数f(x)的导函数f′(x)在(-1,1)上是单调函数;
(2)当a>1时,函数f(x)也存在两个极值点x3,x4,且x3<x4,是判断x1,x2,x3,x4的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知an=2n(n∈N+),则a1a2+a2a3+a3a4+…+anan+1=$\frac{4n(n+1)(n+2)}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若函数y=$\frac{2}{{2}^{x}+1}$+m的图象关于原点对称,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.假如某天我校某班有3男2女五位同学均获某年北大、清华、复旦三大名校的保送资格,那么恰有2男1女三位同学保送北大的概率是(  )
A.$\frac{6}{125}$B.$\frac{2}{81}$C.$\frac{24}{125}$D.$\frac{8}{81}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.给定集合A={a1,a2,a3,…,an}(n∈N*?,n≥3),定义ai+aj(1≤i<j≤n,i,j∈N*)中所有不同值的个数为集合A两元素和的容量,用L(A)表示,若A={2,4,6,8},则L(A)=5;若集合A={a1,a2,a 3,…,a 100},则L(A)的最小值为(  )
A.5050B.4950C.197D.195

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知sin(π-α)sin(4π+α)=$\frac{1}{9}$,α∈($\frac{5π}{2}$,3π),求cos(α-$\frac{3π}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,网格纸的小正方形的边长是1,粗线画出的是一个几何体的三视图,则这个几何体的体积为(  )
A.$\frac{5}{2}$B.$\frac{7}{2}$C.2+$\frac{\sqrt{3}}{4}$D.3+$\frac{\sqrt{3}}{3}$

查看答案和解析>>

同步练习册答案