精英家教网 > 高中数学 > 题目详情

(12分)已知函数
(Ⅰ)当时,求函数的最小值;
(Ⅱ)若对任意,恒成立,试求实数的取值范围.

(Ⅰ) 时,取得最小值.(Ⅱ) .

解析试题分析:(1)先将原式化成求解导数f‘(x),再利用导数的正负与函数单调性的关系,即可求得函数f(x)的最小值;
(2)原题等价于x2+2x+a>0对x∈[1,+∞)恒成立,再结合二次函数的单调性只须g(1)>0,从而求得实数a的取值范围;
解(Ⅰ) 时,(因为)
所以,上单调递增,故时,取得最小值.
(Ⅱ) 因为对任意,恒成立,即恒成立,只需恒成立,只需,因为,
所以,实数的取值范围是.
考点:本题主要考查了函数单调性的应用、函数奇偶性的应用、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
点评:解决该试题的关键是是对于同一个问题的不同的处理角度,可以运用均值不等式得到最值,也可以结合导数的工具得到最值,对于恒成立问题一般都是转换为求解函数的 最值即可得到。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数定义域为,且.
设点是函数图像上的任意一点,过点分别作直线轴的垂线,垂足分别为

(1)写出的单调递减区间(不必证明);(4分)
(2)设点的横坐标,求点的坐标(用的代数式表示);(7分)
(3)设为坐标原点,求四边形面积的最小值.(7分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
定义在上的偶函数,已知当时的解析式
(Ⅰ)写出上的解析式;
(Ⅱ)求上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)(1)已知函数,问方程在区间[-1,0]内是否有
解,为什么?
(2)若方程在(0,1)内恰有一解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数=
(1)证明:上是增函数;(2)求上的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)设.
(1)若恒成立,求实数的取值范围;
(2)若时,恒成立,求实数的取值范围;
(3)当时,解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)设为非负实数,函数
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分) 如图,有一块矩形空地,要在这块空地上辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=>2),BC=2,且AE=AH=CF=CG,设AE=,绿地面积为.

(1)写出关于的函数关系式,并指出这个函数的定义域;
(2)当AE为何值时,绿地面积最大?  (10分) 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知 
(1)求的最小值;  
(2)求的值域。

查看答案和解析>>

同步练习册答案