精英家教网 > 高中数学 > 题目详情
5.已知三棱锥A-BCD的四个顶点A、B、C、D都在球O的表面上,AC⊥平面BCD,BC⊥CD,且AC=$\sqrt{3}$,BC=2,CD=$\sqrt{5}$,则球O的表面积为12π.

分析 证明BC⊥平面ACD,三棱锥S-ABC可以扩充为以AC,BC,DC为棱的长方体,外接球的直径为体对角线,求出球的半径,即可求出球O的表面积.

解答 解:由题意,AC⊥平面BCD,BC?平面BCD,
∴AC⊥BC,
∵BC⊥CD,AC∩CD=C,
∴BC⊥平面ACD,
∴三棱锥S-ABC可以扩充为以AC,BC,DC为棱的长方体,外接球的直径为体对角线,
∴4R2=AC2+BC2+CD2=12,
∴R=$\sqrt{3}$,
∴球O的表面积为4πR2=12π.
故答案为12π.

点评 本题给出特殊的三棱锥,由它的外接球的表面积.着重考查了线面垂直的判定与性质、勾股定理与球的表面积公式等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.如图,在平行六面体ABCD-A'B'C'D'中,$AB=3,AD=4,AA'=4,∠BAD=\frac{π}{2}$,$∠BAA'=\frac{π}{3}$,$∠DAA'=\frac{π}{3}$,则AC'=$\sqrt{69}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在各项为正实数的等差数列{an}中,其前2016项的和S2016=1008,则$\frac{1}{{{a_{1001}}}}+\frac{9}{{{a_{1016}}}}$的最小值为(  )
A.12B.16C.$\frac{1}{84}$D.$\frac{2}{251}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知A(5,-1),B(m,m),C(2,3)三点.
(1)若AB⊥BC,求m的值;
(2)求线段AC的中垂线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.则数列$\left\{{\frac{1}{{{a_{2n-1}}{a_{2n+1}}}}}\right\}$的前50项和T50=$\frac{-51}{101}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{a}$=(x,$\sqrt{3}$),$\overrightarrow{b}$=(x,-$\sqrt{3}$),若(2$\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则|$\overrightarrow{a}$|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知在直三棱柱ABC-A1B1C1中,AB=AA1=2,二面角A-C1C-B的大小为$\frac{π}{3}$,点D线段BC的中点.
(1)若AB=AC,求证:平面BB1C1C⊥平面AB1D;
(2)当三棱柱ABC-A1B1C1的体积最大时,求直线A1D与平面AB1D所成角θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2-2a2lnx(a>0).
(1)若f(x)在x=1处取得极值,求实数a的值;
(2)求函数f(x)的单调区间;
(3)求f(x)在(1,f(1))处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2cos2x+sin(2x-$\frac{π}{6}$)
(1)求函数f(x)的单调增区间;最大值,以及取得最大值时x的取值集合;
(2)已知△ABC中,角A、B、C的对边分别为a,b,c,若f(A)=$\frac{3}{2}$,b+c=2,求实数a的取值范围.

查看答案和解析>>

同步练习册答案