分析 证明BC⊥平面ACD,三棱锥S-ABC可以扩充为以AC,BC,DC为棱的长方体,外接球的直径为体对角线,求出球的半径,即可求出球O的表面积.
解答 解:由题意,AC⊥平面BCD,BC?平面BCD,
∴AC⊥BC,
∵BC⊥CD,AC∩CD=C,
∴BC⊥平面ACD,
∴三棱锥S-ABC可以扩充为以AC,BC,DC为棱的长方体,外接球的直径为体对角线,
∴4R2=AC2+BC2+CD2=12,
∴R=$\sqrt{3}$,
∴球O的表面积为4πR2=12π.
故答案为12π.
点评 本题给出特殊的三棱锥,由它的外接球的表面积.着重考查了线面垂直的判定与性质、勾股定理与球的表面积公式等知识,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 12 | B. | 16 | C. | $\frac{1}{84}$ | D. | $\frac{2}{251}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com