精英家教网 > 高中数学 > 题目详情

【题目】如图所示,一隧道内设双行线公路,其截面由一个长方形和抛物线构成.为保证安全,要求行使车辆顶部(设为平顶)与隧道顶部在竖直方向上的高度之差至少要有0.5米.若行车道总宽度AB为6米,则车辆通过隧道的限制高度是______米(精确到0.1米)

【答案】32

【解析】

根据题意可以建立适当的平面直角坐标系,从而可以得到抛物线的解析式,然后根据要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5m,可以得到当x=-3时,求出相应的y值,此时汽车的顶部离隧道的顶部距离至少是0.5m,从而可以求得车辆经过隧道时的限制高度是多少米.

取抛物线的顶点为原点,对称轴为y轴,建立直角坐标系,c(4,-4),

设抛物线方程x2=-2pyp>0),将点C代入抛物线方程得p=2,

抛物线方程为x2=-4y,行车道总宽度AB=6m

x=3代入抛物线方程,y=-2.25m

限度为

则车辆通过隧道的限制高度是3.2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】ABC中,

(1)求证:cos2+cos2=1;

(2)若cos(+A)sin(π+B)tan(C﹣π)<0,求证:ABC为钝角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[4050),[5060),[6070),[90100]分成6组,制成如图所示频率分布直方图.

1)求图中x的值;

2)求这组数据的中位数;

3)现从被调查的问卷满意度评分值在[6080)的学生中按分层抽样的方法抽取5人进行座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解该校多媒体教学普及情况,根据年龄按分层抽样的方式调查了该校50名教师,他们的年龄频数及使用多媒体教学情况的人数分布如下表:

(1)由以上统计数据完成下面的列联表,并判断是否有的把握认为以40岁为分界点对是否经常使用多媒体教学有差异?

附:.

(2)若采用分层抽样的方式从年龄低于40岁且经常使用多媒体的教师中选出6人,再从这6人中随机抽取2人,求这2人中至少有1人年龄在30-39岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若恒成立,求的取值范围;

(2)证明:不等式对于正整数恒成立,其中为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学团委组织了纪念抗日战争胜利73周年的知识竞赛,从参加竞赛的学生中抽出60名学生,将其成绩(均为整数)分成六段后,画出如图所示的部分频率分布直方图.观察图形给出的信息,回答下列问题:

1)求第四组的频率,并补全这个频率分布直方图;

2)估计这次竞赛的及格率(60分及以上为及格)和平均分(同一组中的数据用该组区间的中点值代表)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,函数恰有两个不同的零点,求实数的值;

2)当时,

若对于任意,恒有,求的取值范围;

,求函数在区间上的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)=-x2+2bx-4,若对任意的x1∈(0,2),任意的x2∈[1,2],不等式f(x1)≥g(x2)恒成立,则实数b的取值范围是(  )

A. B. (1,+∞)

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程为ρ2.

(1)若以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,求曲线C的直角坐标方程;

(2)P(xy)是曲线C上的一个动点,求3x4y的最大值.

查看答案和解析>>

同步练习册答案