精英家教网 > 高中数学 > 题目详情

【题目】一个圆柱形圆木的底面半径为1 m,长为10 m,将此圆木沿轴所在的平面剖成两部分.现要把其中一部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD如图所示,其中O为圆心,C,D在半圆上,设,木梁的体积为V单位:m3,表面积为S单位:m2

1求V关于θ的函数表达式;

2的值,使体积V最大;

3问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.

【答案】1 23

【解析】1.

.

2

,得,或.∵,∴

时,为增函数;

时,为减函数.

∴当时,体积V最大.

3是,理由如下:

木梁的侧面积

,则

∴当,即时,最大.又由2时,取得最大值,所以时,木梁的表面积S最大.

综上,当木梁的体积V最大时,其表面积S也最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在正三棱柱中,D是AC的中点,AB1⊥BC1,则平面DBC1与平面CBC1所成的角为

A.30° B.45°

C.60° D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求证:不论m取什么实数,直线(2m-1)x+(m+3)y-(m-11)=0都经过一个定点,并求出这个定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0),直线l与抛物线C相交于A,B两点,P为抛物线上一点,当直线l过抛物线焦点时,|AB|的最小值为2.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若AB的中点为(3,1),且直线PA,PB的倾斜角互补,求△PAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn . 若Sn=2an﹣n,则 + + + =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为 .现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立.
(Ⅰ)求至少有一种新产品研发成功的概率;
(Ⅱ)若新产品A研发成功,预计企业可获利润120万元;若新产品B研发成功,预计企业可获利润100万元,求该企业可获利润的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.

x

3

4

5

6

y

2.5

3

4

4.5

1)请画出上表数据的散点图.

2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程.

3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤.

(参考数值:3×2.54×35×46×4.566.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=aln(x﹣1),g(x)=x2+bx,F(x)=f(x+1)﹣g(x),其中a,b∈R.
(1)若y=f(x)与y=g(x)的图象在交点(2,k)处的切线互相垂直,求a,b的值;
(2)若x=2是函数F(x)的一个极值点,x0和1是F(x)的两个零点,且x0∈(n,n+1)n∈N,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=log44x+1+kxgx=log4a2xa),其中fx)是偶函数.

1)求实数k的值;

2)求函数gx)的定义域;

(3)若函数fx)与gx)的图象有且只有一个公共点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案