精英家教网 > 高中数学 > 题目详情

已知向量u=(x,y)与向量v=(y,2y-x)的对应关系可用vf(u)表示.

(1)证明对于任意向量ab及常数m、n,恒有f(ma+nb)=mf(a)+nf(b)成立;

(2)设a=(1,1),b=(1,0),求向量f(a)及f(b)的坐标;

(3)求使f(c)=(3,5)成立的向量c

答案:
解析:

  (1)证明:设向量a=(x1,y1),b=(x2,y2),

  则f(mx1+nx2,my1+ny2)=(my1+ny2,2my1+2ny2-mx1-nx2),

又m  f(a)=(my1,2my1-mx1),nf(b)=(ny2,2ny2-nx2),

  所以mf(a)+nf(b)=(my1+ny2,2my1+2ny2-mx1-nx2).

  所以f(ma+nb)=mf(a)+nf(b).

  (2)解:f(a)=(1,1),f(b)=(0,-1).

  (3)解:由所以c=(1,3).


练习册系列答案
相关习题

科目:高中数学 来源:设计必修四数学苏教版 苏教版 题型:044

已知向量u=(x,y)与向量v=(y,2y-x)的对应关系可用v=f(u)表示.

(1)求证:对于任意向量ab及常数m、n,f(ma+nb)=mf(a)+nf(b)恒成立;

(2)设a=(1,1),b=(1,0),求向量f(a)、f(b)的坐标;

(3)求使f(c)=(p,q)(p、q为常数)的向量c的坐标.

查看答案和解析>>

科目:高中数学 来源:设计必修四数学人教A版 人教A版 题型:044

已知向量u=(x,y),v=(y,2y-x)的对应关系用v=f(u)来表示.

(1)求证:对于任意向量ab及常数m、n恒有f(ma+nb)=mf(a)+nf(b)成立;

(2)求使f(c)=(p,q)(p、q为常数)的向量c的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量u=(xy)与向量v=(y,2yx)的对应关系记作vf(u).

(1)求证:对于任意向量ab及常数mn,恒有f(manb)=mf(a)+nf(b);

(2)若a=(1,1),b=(1,0),用坐标表示f(a)和f(b);

(3)求使f(c)=(pq)(pq为常数)的向量c的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量u=(x,y),v=(y,2y-x)的对应关系用v=f(u)来表示.

(1)证明对于任意向量a,b及常数m,n,恒有f(m a+n b)=mf(a)+nf(b)成立;

(2)设a=(1,1),b=(1,0),求向量f(a)及f(b)的坐标.

查看答案和解析>>

同步练习册答案