精英家教网 > 高中数学 > 题目详情

【题目】:实数满足,其中 :实数满足.

(1)若,且为真,求实数的取值范围;

(2)若的必要不充分条件,求实数的取值范围.

【答案】(1) 实数的取值范围是;(2) 实数的取值范围是.

【解析】试题分析:(1)利用一元二次不等式的解法可化简命题p,q,若pq为真,则p,q至少有1个为真,即可得出;(2)根据p是q的必要不充分条件,即可得出.

试题解析:

(1)由x2﹣4ax+3a20,得(x﹣3a)(x﹣a)<0,

又a0,所以a<x<3a,

当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.

q为真时等价于(x﹣2)(x﹣3)0,得2<x<3,

即q为真时实数x的取值范围是2<x<3.

若pq为真,则实数x的取值范围是1<x<3.

(2)p是q的必要不充分条件,等价于qp且p推不出q,

设A={x|a<x<3a},B={x|2<x<3},则BA;

所以实数a的取值范围是1≤a≤2。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为1,E在CD延长线上,且DE=CD.动点P从点A出发沿正方形ABCD的边按逆进针方向运动一周回到A点,其中 ,则下列命题正确的是 . (填上所有正确命题的序号)
①当点P为AD中点时,λ+μ=1;
②λ+μ的最大值为3;
③若y为给定的正数,则一存在向量 和实数x,使 =x +y

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个极值点,其中为常数, 为自然对数的底数.

(1)求实数的取值范围;

(2)证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤的几组对照数据:

1

2

3

4

5

2

3

6

9

10

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(3)已知该厂技术改造前100吨甲产品能耗为200吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,试求的单调增区间;

(2)试求上的最大值;

(3)当时,求证:对于恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和 (n为正整数).
(1)求数列{an}的通项公式;
(2)令 ,Tn=c1+c2+…+cn , 求Tn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:
①三点确定一个平面;
②三条两两相交的直线确定一个平面;
③在空间上,与不共面四点A,B,C,D距离相等的平面恰有7个;
④两个相交平面把空间分成四个区域.
其中真命题的序号是 (写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已{x1 , x2 , x3 , x4}{x>0|(x﹣3)sinπx=1},则x1+x2+x3+x4的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)的定义域D,如果存在正实数m,使得对任意x∈D,都有f(x+m)>f(x),则称f(x)为D上的“m型增函数”.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x﹣a|﹣a(a∈R).若f(x)为R上的“20型增函数”,则实数a的取值范围是(  )
A.a>0
B.a<5
C.a<10
D.a<20

查看答案和解析>>

同步练习册答案