精英家教网 > 高中数学 > 题目详情
(本小题12分)如图,在四棱锥P—ABCD中, CD∥AB, AD⊥AB,  BC⊥PC ,
(1)求证:PA⊥BC
(2)试在线段PB上找一点M,使CM∥平面PAD, 并说明理由.


(1).连接AC,过C作CE⊥AB,垂足为E,
AD=DC,所以四边形ADCE是正方形。
所以∠ACD=∠ACE=因为AE=CD=AB,所以BE=AE=CE
所以∠BCE==所以∠ACB=∠ACE+∠BCE=
所以AC⊥BC,      …………………………………………………………… 3分
又因为BC⊥PC,AC∩PC="C,AC   " 平面PAC,PC  平面 PAC
所以BC⊥平面 PAC,而 平面 PAC,所以PA⊥BC.  ………………… 6分
(2).当M为PB中点时,CM∥平面PAD, …………………………………… 8分
证明:取AP中点为F,连接CM,FM,DF.
则FM∥AB,FM=AB,因为CD∥AB,CD=AB,所以FM∥CD,FM="CD. " ………9分
所以四边形CDFM为平行四边形,所以CM∥DF,   ……………………… 10分
因为DF平面PAD ,CM平面PAD,所以,CM∥平面PAD. ……………… 12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,正方体的棱长为,过点作平面的垂线,垂足为点,则以下命题中,错误的命题是(  )
A.点的垂心
B.的延长线经过点
C.垂直平面
D.直线所成角为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,已知四棱锥中,侧棱平面,底面是平行四边形,分别是的中点.
(1)求证:平面
(2)当平面与底面所成二面角为时,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三棱锥中,底面为边长等于2的等边三角形,垂直于底面=1,那么直线与平面所成角的正弦值为 
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,PA垂直于矩形 ABCD所在的平面,M、N分别是AB、PC的中点
⑴求证:MN∥平面PAD;
⑵若,求证:MN⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图, PA⊥平面ABCD,四边形ABCD是矩形,点E在边AB上,F为PD的中点,AF∥平面PCE,二面角P-CD-B为450,AD=2,CD=3.

(1)试确定E点位置; (2)求直线AF到平面PCE的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如右图所示,ABCD-A1B1C1D1是正四棱柱,侧棱长为1,底面边长为2,E是棱BC的中点.

(1)求证:BD1∥平面C1DE;
(2)求三棱锥D-D1BC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱锥P-ABC中,已知PA^平面ABC, PA=3,PB=PC=BC="6," 求二面角P-BC-A的正弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在空间直角坐标系中,点关于轴对称点的坐标为         .

查看答案和解析>>

同步练习册答案