17£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄÒ»¸ö½¹µãÓëÅ×ÎïÏßy2=4xµÄ½¹µãÏàͬ£¬F1£¬F2ΪÍÖÔ²µÄ×ó¡¢ÓÒ½¹µã£®MΪÍÖÔ²ÉÏÈÎÒâÒ»µã£¬¡÷MF1F2Ãæ»ýµÄ×î´óֵΪ1£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©Ö±Ïßl£ºy=kx+m£¨m¡Ù0£©½»ÍÖÔ²CÓÚA£¬BÁ½µã£®
¢ÙÈôxÖáÉÏÈÎÒâÒ»µãµ½Ö±ÏßAF2ÓëBF2¾àÀëÏàµÈ£¬ÇóÖ¤£ºÖ±Ïßl¹ý¶¨µã£¬²¢Çó³ö¸Ã¶¨µãµÄ×ø±ê£»
ÈôÖ±ÏßlµÄбÂÊÊÇÖ±ÏßOA£¬OBбÂʵĵȱÈÖÐÏÇó¡÷AOBÃæ»ýµÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨1£©ÓÉy2=4x½¹µãΪ£¨1£¬0£©£¬Ôòc=1£¬µ±µãMΪÍÖÔ²µÄ¶ÌÖá¶Ëµãʱ£¬¡÷MF1F2Ãæ»ý×î´ó£¬´Ëʱ$S=\frac{1}{2}¡Á2c¡Áb=1$£¬a2=b2+c2=2£¬¼´¿ÉÇóµÃÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©¢Ù½«Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÓÉΤ´ï¶¨Àí¼°Ö±ÏßµÄбÂʹ«Ê½ÇóµÃm=-2k£¬Ö±ÏßlµÄ·½³ÌΪy=k£¨x-2£©£¬Òò´ËÖ±Ïßlºã¹ý¶¨µã£¬¸Ã¶¨µã×ø±êΪ£¨2£¬0£©£®¢ÚÖ±ÏßlµÄбÂÊÊÇÖ±ÏßOA£¬OBбÂʵĵȱÈÖÐÏ${k_{OA}}•{k_{OB}}={k^2}$£¬ÕûÀí¿ÉÖª£º$-\frac{{4{k^2}{m^2}}}{{1+2{k^2}}}+{m^2}=0$£¬ÓÖm¡Ù0£¬ÓÉÏÒ³¤¹«Ê½ÇóµÃØ­ABØ­£¬µãOµ½Ö±ÏßABµÄ¾àÀëΪd£¬ÔòÈý½ÇÐεÄÃæ»ý¹«Ê½¼°»ù±¾²»µÈʽµÄÐÔÖÊ£¬¼´¿ÉÇóµÃÇó¡÷AOBÃæ»ýµÄÈ¡Öµ·¶Î§£®

½â´ð ½â£º£¨1£©ÓÉÅ×ÎïÏߵķ½³Ìy2=4xµÃÆä½¹µãΪ£¨1£¬0£©£¬ÔòÍÖÔ²ÖÐc=1£¬
µ±µãMΪÍÖÔ²µÄ¶ÌÖá¶Ëµãʱ£¬¡÷MF1F2Ãæ»ý×î´ó£¬´Ëʱ$S=\frac{1}{2}¡Á2c¡Áb=1$£¬
¡àb=1£¬F1£¬F2ΪÍÖÔ²µÄ×ó¡¢ÓÒ½¹µã£¬MΪÍÖÔ²ÉÏÈÎÒâÒ»µã£¬¡÷MF1F2Ãæ»ýµÄ×î´óֵΪ1£¬
a2=b2+c2=2£¬
¡àÍÖÔ²µÄ·½³ÌΪ$\frac{x^2}{2}+{y^2}=1$£»
£¨2£©ÁªÁ¢$\left\{{\begin{array}{l}{\frac{x^2}{2}+{y^2}=1}\\{y=kx+m}\end{array}}\right.$£¬µÃ£¨1+2k2£©x2+4kmx+2m2-2=0£¬
ÓÉ¡÷=16k2m2-4£¨2k2+1£©£¨2m2-2£©=8£¨2k2-m2+1£©£¾0£¬µÃ1+2k2£¾m2£¨*£©
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
Ôò${x_1}+{x_2}=-\frac{4km}{{1+2{k^2}}}£¬{x_1}{x_2}=\frac{{2{m^2}-2}}{{1+2{k^2}}}$£¬
¢Ù${k_1}=\frac{y_1}{{{x_1}-1}}=\frac{{k{x_1}+m}}{{{x_1}-1}}£¬{k_2}=\frac{y_2}{{{x_2}-1}}=\frac{{k{x_2}+m}}{{{x_2}-1}}$£¬ÓÉk1+k2=0£¬µÃ$\frac{{k{x_1}+m}}{{{x_1}-1}}+\frac{{k{x_2}+m}}{{{x_2}-1}}=0$£¬
ËùÒÔ2kx1x2+£¨m-k£©£¨x1+x2£©-2m=0£¬¼´$2k•\frac{{2{m^2}-2}}{{1+2{k^2}}}+£¨{m-k}£©£¨{-\frac{4km}{{1+2{k^2}}}}£©-2m=0$£¬µÃm=-2k£¬
¡àÖ±ÏßlµÄ·½³ÌΪy=k£¨x-2£©£¬
Òò´ËÖ±Ïßlºã¹ý¶¨µã£¬¸Ã¶¨µã×ø±êΪ£¨2£¬0£©£®
¢Ú¡ßÖ±ÏßlµÄбÂÊÊÇÖ±ÏßOA£¬OBбÂʵĵȱÈÖÐÏ
¡à${k_{OA}}•{k_{OB}}={k^2}$£¬¼´$\frac{{{y_1}{y_2}}}{{{x_1}{x_2}}}={k^2}$£¬µÃ$\frac{{£¨{k{x_1}+m}£©£¨{k{x_2}+m}£©}}{{{x_1}{x_2}}}={k^2}$£¬µÃ$km£¨{{x_1}+{x_2}}£©+{m^2}=0$£¬
¡à$-\frac{{4{k^2}{m^2}}}{{1+2{k^2}}}+{m^2}=0$£¬ÓÖm¡Ù0£¬
¡à${k^2}=\frac{1}{2}$£¬´úÈ루*£©£¬µÃ0£¼m2£¼2£®
$|{AB}|=\sqrt{1+{k^2}}|{{x_1}-{x_2}}|=\sqrt{3£¨{2-{m^2}}£©}$£®
ÉèµãOµ½Ö±ÏßABµÄ¾àÀëΪd£¬Ôò$d=\frac{|m|}{{\sqrt{1+{k^2}}}}=\frac{{\sqrt{2}|m|}}{{\sqrt{3}}}$£¬
¡à${S_{¡÷AOB}}=\frac{1}{2}|{AB}|•d=\frac{1}{2}\sqrt{3{{£¨{2-m}£©}^2}}\frac{{\sqrt{2}|m|}}{{\sqrt{3}}}=\frac{{\sqrt{2}}}{2}\sqrt{{m^2}£¨{2-{m^2}}£©}¡Ü\frac{{\sqrt{2}}}{2}\sqrt{{{£¨{\frac{{{m^2}+2-{m^2}}}{2}}£©}^2}}=\frac{{\sqrt{2}}}{2}$£¬
µ±ÇÒ½öµ±m2=2-m2£¬¼´m2=1¡Ê£¨0£¬2£©Ê±£¬¡÷AOBÃæ»ýÈ¡×î´óÖµ$\frac{{\sqrt{2}}}{2}$£®
¹Ê¡÷AOBÃæ»ýµÄÈ¡Öµ·¶Î§Îª$£¨{0£¬\frac{{\sqrt{2}}}{2}}]$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØϵ£¬¿¼²éÖ±ÏßµÄбÂʹ«Ê½£¬Î¤´ï¶¨Àí£¬µãµ½Ö±ÏߵľàÀ빫ʽ¼°»ù±¾²»µÈʽµÄÐÔÖʵÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®f£¨x£©=ln|x-2|-m£¨m¡ÊR£©µÄËùÓÐÁãµãÖ®ºÍΪ4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªiÊÇÐéÊýµ¥Î»£¬Èôz=i£¨-1+2i£©£¬ÔòzµÄʵ²¿ÓëÐ鲿·Ö±ðΪ£¨¡¡¡¡£©
A£®-1£¬-2B£®-1£¬-2iC£®-2£¬-1D£®-2£¬-i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÔÚ¡÷ABCÖУ¬ÒÑÖªa£¬b£¬c·Ö±ðÊǽÇA£¬B£¬CµÄ¶Ô±ß£¬$cosA=\frac{4}{5}$£¬c=2£¬¡÷ABCµÄÃæ»ýS=6£¬ÔòaµÄֵΪ£¨¡¡¡¡£©
A£®$6\sqrt{2}$B£®$4\sqrt{5}$C£®$2\sqrt{34}$D£®72

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªA={x|a1x2+b1x+c1£¾0£¨a1£¬b1£¬c1¡ÊR£¬a1b1c1¡Ù0£©}£¬B={x|a2x2+b2x+c2£¾0£¨a2£¬b2£¬c2¡ÊR£¬a2b2c2¡Ù0£©}£¬ÔòA=BÊÇ$\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$³ÉÁ¢µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þD£®³äÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Ìå»ýΪ$\frac{32¦Ð}{3}$µÄÇòÓÐÒ»¸öÄÚ½ÓÕýÈýÀâ׶P-ABC£¬PQÊÇÇòµÄÖ±¾¶£¬¡ÏAPQ=60¡ã£¬ÔòÈýÀâ׶P-ABCµÄÌå»ýΪ£¨¡¡¡¡£©
A£®$\frac{27\sqrt{3}}{4}$B£®$\frac{9\sqrt{3}}{4}$C£®$\frac{3\sqrt{3}}{4}$D£®$\frac{\sqrt{3}}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖª¹«²î´óÓÚÁãµÄµÈ²îÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÇÒÂú×ãa3•a4=117£¬a2+a5=-22£®
£¨1£©ÇóͨÏîan£»
£¨2£©ÇóSnµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®${£¨x+\frac{1}{x}£©^9}$Õ¹¿ªÊ½ÖеĵÚËÄÏîÊÇ£¨¡¡¡¡£©
A£®56x3B£®84x3C£®56x4D£®84x4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªx¡¢yÂú×ã²»µÈʽ×é$\left\{\begin{array}{l}{x+y¡Ü1}\\{x-y¡Ý-1}\\{y¡Ý0}\end{array}\right.$£¬ÈôÖ±Ïßx-y-a=0ƽ·Ö²»µÈʽ×éËù±íʾµÄƽÃæÇøÓòµÄÃæ»ý£¬ÔòaµÄֵΪ£¨¡¡¡¡£©
A£®-$\frac{1}{2}$B£®-$\frac{\sqrt{2}}{2}$C£®1-2$\sqrt{2}$D£®1-$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸