·ÖÎö £¨1£©ÓÉy2=4x½¹µãΪ£¨1£¬0£©£¬Ôòc=1£¬µ±µãMΪÍÖÔ²µÄ¶ÌÖá¶Ëµãʱ£¬¡÷MF1F2Ãæ»ý×î´ó£¬´Ëʱ$S=\frac{1}{2}¡Á2c¡Áb=1$£¬a2=b2+c2=2£¬¼´¿ÉÇóµÃÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©¢Ù½«Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÓÉΤ´ï¶¨Àí¼°Ö±ÏßµÄбÂʹ«Ê½ÇóµÃm=-2k£¬Ö±ÏßlµÄ·½³ÌΪy=k£¨x-2£©£¬Òò´ËÖ±Ïßlºã¹ý¶¨µã£¬¸Ã¶¨µã×ø±êΪ£¨2£¬0£©£®¢ÚÖ±ÏßlµÄбÂÊÊÇÖ±ÏßOA£¬OBбÂʵĵȱÈÖÐÏ${k_{OA}}•{k_{OB}}={k^2}$£¬ÕûÀí¿ÉÖª£º$-\frac{{4{k^2}{m^2}}}{{1+2{k^2}}}+{m^2}=0$£¬ÓÖm¡Ù0£¬ÓÉÏÒ³¤¹«Ê½ÇóµÃØABØ£¬µãOµ½Ö±ÏßABµÄ¾àÀëΪd£¬ÔòÈý½ÇÐεÄÃæ»ý¹«Ê½¼°»ù±¾²»µÈʽµÄÐÔÖÊ£¬¼´¿ÉÇóµÃÇó¡÷AOBÃæ»ýµÄÈ¡Öµ·¶Î§£®
½â´ð ½â£º£¨1£©ÓÉÅ×ÎïÏߵķ½³Ìy2=4xµÃÆä½¹µãΪ£¨1£¬0£©£¬ÔòÍÖÔ²ÖÐc=1£¬
µ±µãMΪÍÖÔ²µÄ¶ÌÖá¶Ëµãʱ£¬¡÷MF1F2Ãæ»ý×î´ó£¬´Ëʱ$S=\frac{1}{2}¡Á2c¡Áb=1$£¬
¡àb=1£¬F1£¬F2ΪÍÖÔ²µÄ×ó¡¢ÓÒ½¹µã£¬MΪÍÖÔ²ÉÏÈÎÒâÒ»µã£¬¡÷MF1F2Ãæ»ýµÄ×î´óֵΪ1£¬
a2=b2+c2=2£¬
¡àÍÖÔ²µÄ·½³ÌΪ$\frac{x^2}{2}+{y^2}=1$£»
£¨2£©ÁªÁ¢$\left\{{\begin{array}{l}{\frac{x^2}{2}+{y^2}=1}\\{y=kx+m}\end{array}}\right.$£¬µÃ£¨1+2k2£©x2+4kmx+2m2-2=0£¬
ÓÉ¡÷=16k2m2-4£¨2k2+1£©£¨2m2-2£©=8£¨2k2-m2+1£©£¾0£¬µÃ1+2k2£¾m2£¨*£©
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
Ôò${x_1}+{x_2}=-\frac{4km}{{1+2{k^2}}}£¬{x_1}{x_2}=\frac{{2{m^2}-2}}{{1+2{k^2}}}$£¬
¢Ù${k_1}=\frac{y_1}{{{x_1}-1}}=\frac{{k{x_1}+m}}{{{x_1}-1}}£¬{k_2}=\frac{y_2}{{{x_2}-1}}=\frac{{k{x_2}+m}}{{{x_2}-1}}$£¬ÓÉk1+k2=0£¬µÃ$\frac{{k{x_1}+m}}{{{x_1}-1}}+\frac{{k{x_2}+m}}{{{x_2}-1}}=0$£¬
ËùÒÔ2kx1x2+£¨m-k£©£¨x1+x2£©-2m=0£¬¼´$2k•\frac{{2{m^2}-2}}{{1+2{k^2}}}+£¨{m-k}£©£¨{-\frac{4km}{{1+2{k^2}}}}£©-2m=0$£¬µÃm=-2k£¬
¡àÖ±ÏßlµÄ·½³ÌΪy=k£¨x-2£©£¬
Òò´ËÖ±Ïßlºã¹ý¶¨µã£¬¸Ã¶¨µã×ø±êΪ£¨2£¬0£©£®
¢Ú¡ßÖ±ÏßlµÄбÂÊÊÇÖ±ÏßOA£¬OBбÂʵĵȱÈÖÐÏ
¡à${k_{OA}}•{k_{OB}}={k^2}$£¬¼´$\frac{{{y_1}{y_2}}}{{{x_1}{x_2}}}={k^2}$£¬µÃ$\frac{{£¨{k{x_1}+m}£©£¨{k{x_2}+m}£©}}{{{x_1}{x_2}}}={k^2}$£¬µÃ$km£¨{{x_1}+{x_2}}£©+{m^2}=0$£¬
¡à$-\frac{{4{k^2}{m^2}}}{{1+2{k^2}}}+{m^2}=0$£¬ÓÖm¡Ù0£¬
¡à${k^2}=\frac{1}{2}$£¬´úÈ루*£©£¬µÃ0£¼m2£¼2£®
$|{AB}|=\sqrt{1+{k^2}}|{{x_1}-{x_2}}|=\sqrt{3£¨{2-{m^2}}£©}$£®
ÉèµãOµ½Ö±ÏßABµÄ¾àÀëΪd£¬Ôò$d=\frac{|m|}{{\sqrt{1+{k^2}}}}=\frac{{\sqrt{2}|m|}}{{\sqrt{3}}}$£¬
¡à${S_{¡÷AOB}}=\frac{1}{2}|{AB}|•d=\frac{1}{2}\sqrt{3{{£¨{2-m}£©}^2}}\frac{{\sqrt{2}|m|}}{{\sqrt{3}}}=\frac{{\sqrt{2}}}{2}\sqrt{{m^2}£¨{2-{m^2}}£©}¡Ü\frac{{\sqrt{2}}}{2}\sqrt{{{£¨{\frac{{{m^2}+2-{m^2}}}{2}}£©}^2}}=\frac{{\sqrt{2}}}{2}$£¬
µ±ÇÒ½öµ±m2=2-m2£¬¼´m2=1¡Ê£¨0£¬2£©Ê±£¬¡÷AOBÃæ»ýÈ¡×î´óÖµ$\frac{{\sqrt{2}}}{2}$£®
¹Ê¡÷AOBÃæ»ýµÄÈ¡Öµ·¶Î§Îª$£¨{0£¬\frac{{\sqrt{2}}}{2}}]$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØϵ£¬¿¼²éÖ±ÏßµÄбÂʹ«Ê½£¬Î¤´ï¶¨Àí£¬µãµ½Ö±ÏߵľàÀ빫ʽ¼°»ù±¾²»µÈʽµÄÐÔÖʵÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | -1£¬-2 | B£® | -1£¬-2i | C£® | -2£¬-1 | D£® | -2£¬-i |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $6\sqrt{2}$ | B£® | $4\sqrt{5}$ | C£® | $2\sqrt{34}$ | D£® | 72 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
C£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ | D£® | ³äÒªÌõ¼þ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\frac{27\sqrt{3}}{4}$ | B£® | $\frac{9\sqrt{3}}{4}$ | C£® | $\frac{3\sqrt{3}}{4}$ | D£® | $\frac{\sqrt{3}}{4}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 56x3 | B£® | 84x3 | C£® | 56x4 | D£® | 84x4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | -$\frac{1}{2}$ | B£® | -$\frac{\sqrt{2}}{2}$ | C£® | 1-2$\sqrt{2}$ | D£® | 1-$\sqrt{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com