分析 (1)根据1-a2是a1与1+a3的等比中项,建立关于a1的方程,解出a1=$\frac{1}{2}$,从而得出数列{an}的通项公式.再由Tn=nλ•bn+1分别取n=1、2,建立关于{bn}的公差d与λ的方程组,解之即可得到实数λ的值;
(2)由(1)的结论,利用等比数列的求和公式算出Sn的表达式,从而得到由等差数列的通项与求和公式算出{bn}的前n项和Tn=4n2+4n,利用裂项求和的方法算出,再将两式加以比较,即可得到与所求的大小关系.
解答 解:(1)∵${(1-{a_2})^2}={a_1}•({a_3}+1)$,
而{an}是公比为$\frac{1}{2}$的等比数列,
∴${(1-\frac{1}{2}{a_1})^2}={a_1}(\frac{1}{4}{a_1}+1)$,
解得${a_1}=\frac{1}{2}$,${a_n}={(\frac{1}{2})^n}$.
又由Tn=nλbn+1,
∴$\left\{\begin{array}{l}{T_1}=λ{b_1}\\{T_2}=2λ{b_2}\end{array}\right.$,
于是$\left\{\begin{array}{l}8=λ(8+d)\\ 16+d=2λ(8+2d)\end{array}\right.$,
∴$\left\{\begin{array}{l}λ=\frac{1}{2}\\ d=8\end{array}\right.$或$\left\{\begin{array}{l}λ=1\\ d=0\end{array}\right.$(舍去).
∴$λ=\frac{1}{2}$.
(2)已知${S_n}=1-{(\frac{1}{2})^n}$,$\frac{1}{2}{S_n}=\frac{1}{2}-{(\frac{1}{2})^{n+1}}≥\frac{1}{2}-{(\frac{1}{2})^2}=\frac{1}{4}$,
${T_n}=n{b_1}+\frac{n(n-1)}{2}d=8n+4n(n-1)-4{n^2}+4n$,
$\frac{1}{T_n}=\frac{1}{4n(n+1)}=\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,
从而$\frac{1}{T_1}+\frac{1}{T_2}+\frac{1}{T_3}+…+\frac{1}{T_n}=\frac{1}{4}(1-\frac{1}{n+1})<\frac{1}{4}≤\frac{1}{2}{S_n}$.
点评 本题给出等差数列与等比数列满足的条件,求它们的通项公式与前n项和公式,并依此比较两个不等式的大小.着重考查了等差等比数列的通项与求和、数列求和的一般方法与不等式比较大小等知识,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com