精英家教网 > 高中数学 > 题目详情

【题目】从某学校高三年级共1000名男生中随机抽取50人测量身高.据测量,被测学生身高全部介于155cm195cm之间,将测量结果按如下方式分成八组:第一组,第二组,第八组.下图是按上述分组方法得到的频率分布直方图的一部分.其中第六组、第七组、第八组人数依次构成等差数列.

1)求第六组、第七组的频率,并估计高三年级全体男生身高在180cm以上(含180cm)的人数;

2)学校决定让这五十人在运动会上组成一个高旗队,在这五十人中要选身高在180cm以上(含180cm)的三人作为队长,记X为身高在的人数,求X的分布列和数学期望.

【答案】1)第六组,第七组180人;(2)分布列见解析,

【解析】

1)根据频率分布直方图求出各组的频率,根据等差数列关系求解;

2X可能的取值为0123,根据题意分别求出概率即可得到分布列和数学期望.

1)由题:第一组频率:0.04,第二组频率:0.08,第三组频率:0.2,第四组频率:0.2

第五组频率:0.3,设第六组频率p,第七组频率q,第八组频率为:0.04

所以:

解得:

故第六组,第七组,估计人数为180.

2X可能的取值为0123.

所以X的分布列

X

0

1

2

3

P

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面底面,其中底面为等腰梯形,的中点.

1)证明:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了解该校高三年级学生数学科学习情况,对一模考试数学成绩进行分析,从中抽取了名学生的成绩作为样本进行统计,该校全体学生的成绩均在,按照的分组作出频率分布直方图如图(1)所示,样本中分数在内的所有数据的茎叶图如图(2)所示.根据上级统计划出预录分数线,有下列分数与可能被录取院校层次对照表为表(3).

分数

可能被录取院校层次

专科

本科

重本

图(3

1)求和频率分布直方图中的的值;

2)根据样本估计总体的思想,以事件发生的频率作为概率,若在该校高三年级学生中任取3人,求至少有一人是可能录取为重本层次院校的概率;

3)在选取的样本中,从可能录取为重本和专科两个层次的学生中随机抽取3名学生进行调研,用表示所抽取的3名学生中为重本的人数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形所在的平面垂直于平面的中点,.

1)求异面直线所成角的余弦值;

2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)已知函数,其中为正实数.

(1)若函数处的切线斜率为2,求的值;

(2)求函数的单调区间;

(3)若函数有两个极值点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第七届世界军人运动会于20191018日至20191027日在中国武汉举行,第七届世界军人运动会是我国第一次承办的综合性国际军事体育赛事,也是继北京奥运会后我国举办的规模最大的国际体育盛会.经过激烈角逐,奖牌榜的前6名依次为中国俄罗斯巴西法国波兰和德国.其中德国队共有45名运动员获得了奖牌,其中金牌10枚银牌15枚铜牌20枚,某大学德语系同学利用分层抽样的方式从德国队获奖选手中抽取9名获奖代表.

1)请问这9名获奖代表中获金牌银牌铜牌的人数分别为多少人?

2)从这9人中随机抽取3人,记这3人中银牌选手的人数为,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为缓解城市道路交通压力,促进城市道路交通有序运转,减少机动车尾气排放对空气质量的影响,西安市人民政府决定:自2019318日至2020313日在相关区域实施工作日机动车尾号限行交通管理措施.已知每辆机动车每周一到周五都要限行一天,周末(周六和周日)不限行.某公司有ABCDE五辆车,每天至少有四辆车可以上路行驶.已知E车周四限行,B车昨天限行,从今天算起,AC 两辆车连续四天都能上路行驶,E车明天可以上路,由此可知下列推测一定正确的是(

A.今天是周四B.今天是周六C.A车周三限行D.C车周五限行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若关于x的不等式的解集为,求的值;

2)记不等式的解集为A时,恒有成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解学生一周的课外阅读情况,随机抽取了100名学生对其进行调查.下面是根据调查结果绘制的一周学生阅读时间(单位:分钟)的频率分布直方图,且将一周课外阅读时间不低于200分钟的学生称为“阅读爱好”,低于200分钟的学生称为“非阅读爱好”.

1)根据已知条件完成下面列联表,并据此判断是否有97.5%的把握认为“阅读爱好”与性别有关?

非阅读爱好

阅读爱好

合计

男女

50

合计

14

男女

2)将频率视为概率,从该校学生中用随机抽样的方法抽取4人,记被抽取的四人中“阅读爱好”的人数为,若每次抽取的结果是相互独立的,求的分布列和数学期望.

附:

0.10

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

.

查看答案和解析>>

同步练习册答案