精英家教网 > 高中数学 > 题目详情

【题目】某学校在一天上午的5节课中,安排语文、数学、英语三门文化课和音乐、美术两门艺术课各1节,且相邻两节文化课之间最多安排1节艺术课,则不同的排课方法共有________种(用数字作答).

【答案】96

【解析】

分为三种情况:(1)若文化课之间没有艺术课;(2)三门文化课全排列,之间产生3个空,有两门之间插1节艺术课,另两门文化课相邻;(3)三门文化课均不相邻.分别计算每种情况下的排列种数.最后进行相加即可.

解:(1)若文化课之间没有艺术课时,排法种数有种;

(2)三门文化课全排列,之间产生3个空,有两门之间插1节艺术课,另两门文化课相邻,

排法种数有种;

(3)三门文化课均不相邻,则排法种数有.

所以不同的排课方法共有.

故答案为:96

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设双曲线的左、右焦点分别为F1F2,过点F2的直线分别交双曲线左、右两支于点PQ,点M为线段PQ的中点,若PQF1都在以M为圆心的圆上,且,则双曲线C的离心率为(

A.B.2C.D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,.

1)求证:

2)若点 上一点,且,求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线与直线只有一个公共点,点是抛物线上的动点.

1)求抛物线的方程;

2)①若,求证:直线过定点;

②若是抛物线上与原点不重合的定点,且,求证:直线的斜率为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知无穷数列满足:

(Ⅰ)若

(ⅰ)求证:

(ⅱ)数列的前项和为,求证:

(Ⅱ)若对任意的,都有,写出的取值范围并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“2019曹娥江国际马拉松在上虞举行,现要选派5名志愿者服务于四个不同的运动员救助点,每个救助点至少分配1人,若志愿者甲要求不到A救助点,则不同的分派方案有________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有一排10个位置的空停车场,甲、乙、丙三辆不同的车去停放,要求每辆车左右两边都有空车位且甲车在乙、丙两车之间的停放方式共有_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面ABCDEPD的中点,.

1)求四棱锥的体积V

2)若FPC的中点,求证:平面平面AEF

3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥的底面ABCD是边长为a的菱形,ABCDEF分别是CDPC的中点.

1)求证:平面平面PAB

2MPB上的动点,EM与平面PAB所成的最大角为,求二面角的余弦值.

查看答案和解析>>

同步练习册答案