精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为参数).直线的参数方程为参数).

)求曲线在直角坐标系中的普通方程;

)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,当曲线截直线所得线段的中点极坐标为时,求直线的倾斜角.

【答案】;(.

【解析】

)利用可将曲线的参数方程化为普通方程;

)解法一:可直线曲线截直线所得线段的中点坐标为,设弦的端点分别为,利用点差法可求出直线的斜率,即得的值;

解法二:写出直线的参数方程为,将直线参数方程与曲线的普通方程联立,由可求出角的值.

)由曲线的参数方程为参数),得:

曲线的参数方程化为普通方程为:

)解法一:中点极坐标化成直角坐标为.

设直线与曲线相交于两点,则.

,②-①得:

化简得:,即

直线的倾斜角为

解法二:中点极坐标化成直角坐标为

分别代入,得.

,即.

,即.

直线的倾斜角为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆的焦点是,且过点

1)求椭圆的标准方程;

2)过左焦点的直线与椭圆相交于两点,为坐标原点.问椭圆上是否存在点,使线段和线段相互平分?若存在,求出点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第二届中国国际进口博览会于2019115日至10日在上海国家会展中心举行.它是中国政府坚定支持贸易自由化和经济全球化,主动向世界开放市场的重要举措,有利于促进世界各国加强经贸交流合作,促进全球贸易和世界经济增长,推动开放世界经济发展.某机构为了解人们对“进博会”的关注度是否与性别有关,随机抽取了100名不同性别的人员(男、女各50名)进行问卷调查,并得到如下列联表:

男性

女性

合计

关注度极高

35

14

49

关注度一般

15

36

51

合计

50

50

100

1)根据列联表,能否有99.9%的把握认为对“进博会”的关注度与性别有关;

2)若从关注度极高的被调查者中按男女分层抽样的方法抽取7人了解他们从事的职业情况,再从7人中任意选取2人谈谈关注“进博会”的原因,求这2人中至少有一名女性的概率.

附:.

参考数据:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点在椭圆C.

1)求椭圆C的标准方程;

2)若直线上C交于AB两点,是否存在l,使得点在以AB为直径的圆外.若存在,求出k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧棱平面的中点,.

1)求二面角的余弦值;

2)在线段上是否存在点,使得平面?若存在,求出点的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥D-ABC中,EF分别为DBAB的中点,且.

1)求证:平面平面ABC

2)求点D到平面CEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,点EF分别是棱上的动点,且.当三棱锥的体积取得最大值时,记二面角平面角分别为,则( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个极值点,且.

1)求实数的取值范围;

2)若,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在定义域内某个区间,使得上的值域也是,则称函数在定义域上封闭.如果函数上封闭,那么实数的取值范围是______.

查看答案和解析>>

同步练习册答案