分析 由正弦定理可得a:b:c=3:5:7,进而可用b表示a,c,可求A为三角形的最小内角,代入余弦定理化简即可得解.
解答 解:∵sinA:sinB:sinC=3:5:7,
∴由正弦定理可得a:b:c=3:5:7,
∴a=$\frac{3b}{5}$,c=$\frac{7b}{5}$,A为三角形的最小内角,
∴由余弦定理可得cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{{b}^{2}+\frac{49{b}^{2}}{25}-\frac{9{b}^{2}}{25}}{2×b×\frac{7b}{5}}$=$\frac{13}{14}$.
故答案为:$\frac{13}{14}$.
点评 本题考查正余弦定理的应用,用b表示a,c是解决问题的关键,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -2 | B. | 2 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com