精英家教网 > 高中数学 > 题目详情
11.已知:函数f(x)=5sinxcosx+5$\sqrt{3}$sin2x-$\frac{5}{2}$$\sqrt{3}$(x∈R)
(1)求f(x)的最小正周期;
(2)求f(x)的单递增区间;
(3)求f(x)图象的对称轴、对称中心.

分析 化简函数,利用正弦函数的性质,即可得出结论.

解答 解:(1)f(x)=$\frac{5}{2}$sin2x-$\frac{5}{2}$$\sqrt{3}$cos2x=5sin(2x-$\frac{π}{3}$),∴T=π;…(4分)
(2)由-$\frac{π}{2}$+2kπ≤2x-$\frac{π}{3}$≤$\frac{π}{2}$+2kπ,可得递增区间为[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z)  ….(8分)
(3)由2x-$\frac{π}{3}$=$\frac{π}{2}$+kπ,可得对称轴方程为x=$\frac{1}{2}$kπ+$\frac{5π}{12}$,由2x-$\frac{π}{3}$=kπ可得,对称中心为($\frac{1}{2}$kπ+$\frac{π}{6}$,0)(k∈Z)….(12分)

点评 本题考查三角函数的图象与性质,考查学生的计算能力,正确化简是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知tan(π-α)=-$\frac{1}{2}$,求$\frac{2sin(π-α)-3cos(π+α)}{3cos(π-α)+4cos(\frac{π}{2}+α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.y=sin(ωx+φ)(ω>0)与y=a函数图象相交于相邻三点,从左到右为P、Q、R,若PQ=3QR,则a的值为(  )
A.±$\frac{1}{2}$B.±$\frac{\sqrt{2}}{2}$C.±$\frac{\sqrt{3}}{2}$D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知平面上的两个向量$\overrightarrow{a}$=(2cosα,2sinα),$\overrightarrow{b}$=(2cosβ,2sinβ)(0<β<α<π).
(1)若$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{12}{5}$且cosβ=$\frac{4}{5}$,求sinα的值;
(2)判定向量$\overrightarrow{a}$+$\overrightarrow{b}$与向量$\overrightarrow{a}$-$\overrightarrow{b}$是否互相垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆的方程为x2+y2=4,过点M(2,4)作圆的两条切线,切点分别为S,T,直线ST恰好经过椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右顶点和上顶点.
(1)求椭圆C的方程;
(2)设椭圆C与x轴交于S,Q点,已知点P满足$\overrightarrow{PS}•\overrightarrow{PQ}$=0,点A,B在椭圆C上且$\overrightarrow{OA}•\overrightarrow{OB}$=0(O为坐标原点),求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\sqrt{3}$sin2x+2cos2x+m在区间[0,$\frac{π}{2}$]上的最大值为3,则m=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\sqrt{3}(cos\frac{x}{2}-sin\frac{x}{2})(cos\frac{x}{2}+sin\frac{x}{2})+2sin\frac{x}{2}cos\frac{x}{2}$.
(1)求f(x)的最小正周期;
(2)若将f(x)的图象向右平移$\frac{π}{6}$个单位,得到函数g(x)的图象,求函数g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,AC=7,∠B=$\frac{2π}{3}$,△ABC的面积S=$\frac{15\sqrt{3}}{4}$,则边AB的长为3或5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,在体积为2的三棱锥A-BCD侧棱AB、AC、AD上分别取点E、F、G,使AE:EB=AF:FC=AG:GD=2:1,记O为三平面BCG、CDE、DBF的交点,则三棱锥O-BCD的体积等于(  )
A.$\frac{1}{9}$B.$\frac{1}{8}$C.$\frac{1}{7}$D.$\frac{2}{7}$

查看答案和解析>>

同步练习册答案