精英家教网 > 高中数学 > 题目详情

如图所示,矩形中,,且交于点.

(Ⅰ)求证:
(Ⅱ)求三棱锥的体积.

(1)证明过程详见解析;(2).

解析试题分析:本题主要考查线线垂直、线面垂直、线线平行、线面平行的判定和性质以及三棱锥的体积等基础知识,考查空间想象能力和推理论证能力以及运算能力.第一问,由于为矩形,所以中点,由于⊥平面,利用线面垂直的性质,得,而在中,,所以中点,所以,利用线面平行的判定得∥平面;第二问,因为⊥平面,所以⊥平面,利用线面垂直的性质,所以垂直面内的线,同理,,利用线面垂直的判定,得⊥平面,所以利用第一问的结论得,在中求出的长,在中求出的长,从而求出的面积,用等体积转化法求.
试题解析:(1)由题意可得的中点,连结
⊥平面,∴.而,∴的中点,                    2分
中,,∴∥平面.                               5分
(2)∵⊥平面,∴⊥平面,则.
又∵⊥平面,则,又,∴⊥平面.       8分
.而⊥平面,∴⊥平面.∵中点,中点,
=1.∴Rt△

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在底面为平行四边形的四棱锥中,平面,且,点的中点.

(1)求证:
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在正方体中,分别的中点.

(1)求证:
(2)已知是靠近的四等分点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥,,,,,上一点,是平面的交点.

(1)求证:
(2)求证:
(3)求与面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是边长为的正方形,,且

(Ⅰ)求证:平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)棱上是否存在一点,使直线与平面所成的角是?若存在,求的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,已知的直径,点上两点,且为弧的中点.将沿直径折起,使两个半圆所在平面互相垂直(如图2).

(Ⅰ)求证:
(Ⅱ)在弧上是否存在点,使得平面?若存在,试指出点的位置;若不存在,请说明理由;
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四棱锥P-ABCD中,侧面PAD⊥底面ABCD,底面ABCD是边长为2的正方形,又PA=PD,∠APD=60°,E、G分别是BC、PE的中点.

(1)求证:AD⊥PE;
(2)求二面角E-AD-G的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是矩形,四条侧棱长均相等且于点.

(Ⅰ)求证:;
(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在四棱锥中,底面四边形是菱形,,是边长为2的等边三角形,,.

(Ⅰ)求证:底面
(Ⅱ)求直线与平面所成角的大小;
(Ⅲ)在线段上是否存在一点,使得∥平面?如果存在,求的值,如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案